These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 19728304

  • 1. Effects of heterogeneous electron-transfer rate on the resolution of electrophoretic separations based on microfluidics with end-column electrochemical detection.
    Wang J, Tian B, Chatrathi MP, Escarpa A, Pumera M.
    Electrophoresis; 2009 Oct; 30(19):3334-8. PubMed ID: 19728304
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection.
    Wang Y, Chen H, He Q, Soper SA.
    Electrophoresis; 2008 May; 29(9):1881-8. PubMed ID: 18393335
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations.
    Meneses D, Gunasekara DB, Pichetsurnthorn P, da Silva JA, de Abreu FC, Lunte SM.
    Electrophoresis; 2015 Feb; 36(3):441-8. PubMed ID: 25256669
    [Abstract] [Full Text] [Related]

  • 7. Nanoband electrode for high-performance in-channel amperometric detection in dual-channel microchip capillary electrophoresis.
    Chen C, Teng W, Hahn JH.
    Electrophoresis; 2011 Apr; 32(8):838-43. PubMed ID: 21413030
    [Abstract] [Full Text] [Related]

  • 8. Integrated capillary electrophoresis amperometric detection microchip with replaceable microdisk working electrode. II. Influence of channel cross-sectional area on the separation and detection of dopamine and catechol.
    Wang Y, Chen H.
    J Chromatogr A; 2005 Jul 08; 1080(2):192-8. PubMed ID: 16008058
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Integration of microchip electrophoresis with electrochemical detection using an epoxy-based molding method to embed multiple electrode materials.
    Johnson AS, Selimovic A, Martin RS.
    Electrophoresis; 2011 Nov 08; 32(22):3121-8. PubMed ID: 22038707
    [Abstract] [Full Text] [Related]

  • 13. Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system.
    Ertl P, Emrich CA, Singhal P, Mathies RA.
    Anal Chem; 2004 Jul 01; 76(13):3749-55. PubMed ID: 15228350
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of dual electrode configurations for microchip electrophoresis used for voltammetric characterization of electroactive species.
    Gunasekara DB, Wijesinghe MB, Pichetsurnthorn P, Lunte SM.
    Analyst; 2020 Feb 03; 145(3):865-872. PubMed ID: 31820743
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device.
    Lacher NA, Lunte SM, Martin RS.
    Anal Chem; 2004 May 01; 76(9):2482-91. PubMed ID: 15117187
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.