These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 19729018

  • 1. Cardiac T-type Ca(2+) channels in the heart.
    Ono K, Iijima T.
    J Mol Cell Cardiol; 2010 Jan; 48(1):65-70. PubMed ID: 19729018
    [Abstract] [Full Text] [Related]

  • 2. The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice.
    Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, Chen CC.
    Circ Res; 2009 Feb 27; 104(4):522-30. PubMed ID: 19122177
    [Abstract] [Full Text] [Related]

  • 3. T-type Ca2+ channel blockade prevents sudden death in mice with heart failure.
    Kinoshita H, Kuwahara K, Takano M, Arai Y, Kuwabara Y, Yasuno S, Nakagawa Y, Nakanishi M, Harada M, Fujiwara M, Murakami M, Ueshima K, Nakao K.
    Circulation; 2009 Sep 01; 120(9):743-52. PubMed ID: 19687356
    [Abstract] [Full Text] [Related]

  • 4. L-type Ca(2+) current in ventricular cardiomyocytes.
    Benitah JP, Alvarez JL, Gómez AM.
    J Mol Cell Cardiol; 2010 Jan 01; 48(1):26-36. PubMed ID: 19660468
    [Abstract] [Full Text] [Related]

  • 5. Transcription factors Csx/Nkx2.5 and GATA4 distinctly regulate expression of Ca2+ channels in neonatal rat heart.
    Wang Y, Morishima M, Zheng M, Uchino T, Mannen K, Takahashi A, Nakaya Y, Komuro I, Ono K.
    J Mol Cell Cardiol; 2007 Jun 01; 42(6):1045-53. PubMed ID: 17498735
    [Abstract] [Full Text] [Related]

  • 6. Role of T-type Ca2+ channels in the heart.
    Vassort G, Talavera K, Alvarez JL.
    Cell Calcium; 2006 Aug 01; 40(2):205-20. PubMed ID: 16766028
    [Abstract] [Full Text] [Related]

  • 7. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S.
    Circ Res; 2008 Oct 10; 103(8):891-9. PubMed ID: 18776042
    [Abstract] [Full Text] [Related]

  • 8. Intracellular Ca(2+)- and PKC-dependent upregulation of T-type Ca(2+) channels in LPC-stimulated cardiomyocytes.
    Zheng M, Wang Y, Kang L, Shimaoka T, Marni F, Ono K.
    J Mol Cell Cardiol; 2010 Jan 10; 48(1):131-9. PubMed ID: 19744490
    [Abstract] [Full Text] [Related]

  • 9. Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes.
    Lalevée N, Rebsamen MC, Barrère-Lemaire S, Perrier E, Nargeot J, Bénitah JP, Rossier MF.
    Cardiovasc Res; 2005 Aug 01; 67(2):216-24. PubMed ID: 15919070
    [Abstract] [Full Text] [Related]

  • 10. Remodeling excitation-contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression.
    Takebayashi S, Li Y, Kaku T, Inagaki S, Hashimoto Y, Kimura K, Miyamoto S, Hadama T, Ono K.
    Biochem Biophys Res Commun; 2006 Jun 30; 345(2):766-73. PubMed ID: 16701562
    [Abstract] [Full Text] [Related]

  • 11. T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers.
    Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K, Kodama I, Yasui K.
    Life Sci; 2008 Mar 12; 82(11-12):554-60. PubMed ID: 18275974
    [Abstract] [Full Text] [Related]

  • 12. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J, Bers DM.
    Circ Res; 2007 Sep 14; 101(6):590-7. PubMed ID: 17641229
    [Abstract] [Full Text] [Related]

  • 13. NRSF regulates the developmental and hypertrophic changes of HCN4 transcription in rat cardiac myocytes.
    Kuratomi S, Kuratomi A, Kuwahara K, Ishii TM, Nakao K, Saito Y, Takano M.
    Biochem Biophys Res Commun; 2007 Feb 02; 353(1):67-73. PubMed ID: 17173866
    [Abstract] [Full Text] [Related]

  • 14. TRPC channels as effectors of cardiac hypertrophy.
    Eder P, Molkentin JD.
    Circ Res; 2011 Jan 21; 108(2):265-72. PubMed ID: 21252153
    [Abstract] [Full Text] [Related]

  • 15. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes.
    Nakagawa Y, Kuwahara K, Harada M, Takahashi N, Yasuno S, Adachi Y, Kawakami R, Nakanishi M, Tanimoto K, Usami S, Kinoshita H, Saito Y, Nakao K.
    J Mol Cell Cardiol; 2006 Dec 21; 41(6):1010-22. PubMed ID: 17011572
    [Abstract] [Full Text] [Related]

  • 16. Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels.
    Fischmeister R, Castro L, Abi-Gerges A, Rochais F, Vandecasteele G.
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct 21; 142(2):136-43. PubMed ID: 15927494
    [Abstract] [Full Text] [Related]

  • 17. Redox regulation of cardiac calcium channels and transporters.
    Zima AV, Blatter LA.
    Cardiovasc Res; 2006 Jul 15; 71(2):310-21. PubMed ID: 16581043
    [Abstract] [Full Text] [Related]

  • 18. The L-type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state.
    Hool LC.
    Heart Lung Circ; 2009 Feb 15; 18(1):3-10. PubMed ID: 19119068
    [Abstract] [Full Text] [Related]

  • 19. Enhanced Ca2+ channel currents in cardiac hypertrophy induced by activation of calcineurin-dependent pathway.
    Yatani A, Honda R, Tymitz KM, Lalli MJ, Molkentin JD.
    J Mol Cell Cardiol; 2001 Feb 15; 33(2):249-59. PubMed ID: 11162130
    [Abstract] [Full Text] [Related]

  • 20. [Cardiac function involving the T-type Ca2+ channel].
    Ono K, Lee TS, Kaku T.
    Clin Calcium; 2002 Jun 15; 12(6):810-6. PubMed ID: 15775371
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.