These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 1973080

  • 1. Propranolol, a beta-adrenergic receptor blocker, affects microfilament organization, but not microtubules, during the first division in sea urchin eggs.
    Nicotra A, Schatten G.
    Cell Motil Cytoskeleton; 1990; 16(3):182-9. PubMed ID: 1973080
    [Abstract] [Full Text] [Related]

  • 2. Microfilaments during sea urchin fertilization: fluorescence detection with rhodaminyl phalloidin.
    Cline CA, Schatten G.
    Gamete Res; 1986; 14():277-91. PubMed ID: 11540931
    [Abstract] [Full Text] [Related]

  • 3. Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] disrupts microtubule organization, cell division, and early development of sea urchin embryos.
    Holy J.
    J Toxicol Environ Health A; 1998 Jun 26; 54(4):319-33. PubMed ID: 9638902
    [Abstract] [Full Text] [Related]

  • 4. On the mechanics of the first cleavage division of the sea urchin egg.
    He X, Dembo M.
    Exp Cell Res; 1997 Jun 15; 233(2):252-73. PubMed ID: 9194488
    [Abstract] [Full Text] [Related]

  • 5. Microinjected F-actin into dividing newt eggs moves toward the next cleavage furrow together with Ca2+ stores with inositol 1,4,5-trisphosphate receptor in a microtubule- and microtubule motor-dependent manner.
    Mitsuyama F, Futatsugi Y, Okuya M, Karagiozov K, Kato Y, Kanno T, Sano H, Koide T, Sawai T.
    Ital J Anat Embryol; 2008 Jun 15; 113(3):143-51. PubMed ID: 19205586
    [Abstract] [Full Text] [Related]

  • 6. Propranolol induces polyspermy during sea urchin fertilization.
    Nicotra A, Schatten G.
    Mol Reprod Dev; 1996 Mar 15; 43(3):387-91. PubMed ID: 8868252
    [Abstract] [Full Text] [Related]

  • 7. Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus.
    Hollenbeck PJ, Cande WZ.
    Eur J Cell Biol; 1985 May 15; 37():140-8. PubMed ID: 3896803
    [Abstract] [Full Text] [Related]

  • 8. Relative changes in F-actin during the first cell cycle: evidence for two distinct pools of F-actin in the sea urchin egg.
    Heil-Chapdelaine RA, Otto JJ.
    Cell Motil Cytoskeleton; 1996 May 15; 34(1):26-35. PubMed ID: 8860229
    [Abstract] [Full Text] [Related]

  • 9. Actin-mediated surface motility during sea urchin fertilization.
    Cline CA, Schatten H, Balczon R, Schatten G.
    Cell Motil; 1983 May 15; 3(5-6):513-24. PubMed ID: 6686492
    [Abstract] [Full Text] [Related]

  • 10. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G, Bestor T, Balczon R, Henson J, Schatten H.
    Eur J Cell Biol; 1985 Jan 15; 36(1):116-27. PubMed ID: 4038941
    [Abstract] [Full Text] [Related]

  • 11. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H, Walter M, Biessmann H, Schatten G.
    Cell Motil Cytoskeleton; 1988 Jan 15; 11(4):248-59. PubMed ID: 3064924
    [Abstract] [Full Text] [Related]

  • 12. Effect of hexylene glycol-altered microtubule distributions on cytokinesis and polar lobe formation in fertilized eggs of Ilyanassa obsoleta.
    Conrad AH, Stephens AP, Conrad GW.
    J Exp Zool; 1994 Jul 01; 269(3):188-204. PubMed ID: 11536633
    [Abstract] [Full Text] [Related]

  • 13. Dynamics of filamentous actin organization in the sea urchin egg cortex during early cleavage divisions: implications for the mechanism of cytokinesis.
    Wong GK, Allen PG, Begg DA.
    Cell Motil Cytoskeleton; 1997 Jul 01; 36(1):30-42. PubMed ID: 8986375
    [Abstract] [Full Text] [Related]

  • 14. Actin filament translocations in sea urchin eggs.
    Terasaki M.
    Cell Motil Cytoskeleton; 1996 Jul 01; 34(1):48-56. PubMed ID: 8860231
    [Abstract] [Full Text] [Related]

  • 15. T-1, a mitotic arrester, alters centrosome configurations in fertilized sea urchin eggs.
    Itoh TJ, Schatten H, Schatten G, Mazia D, Kobayashi A, Sato H.
    Cell Motil Cytoskeleton; 1990 Jul 01; 16(2):146-54. PubMed ID: 2198112
    [Abstract] [Full Text] [Related]

  • 16. Cold shock induces actin reorganization and polyspermy in sea urchin eggs.
    Santella L, Monroy A.
    J Exp Zool; 1989 Nov 01; 252(2):183-9. PubMed ID: 2600561
    [Abstract] [Full Text] [Related]

  • 17. The cleavage plane will bend when one aster of the mitotic apparatus stops growing in compressed sea urchin eggs.
    Yoshigaki T.
    Bull Math Biol; 2002 Jul 01; 64(4):643-72. PubMed ID: 12216416
    [Abstract] [Full Text] [Related]

  • 18. Displacement of cleavage plane in the sea urchin egg by locally applied taxol.
    Hamaguchi Y.
    Cell Motil Cytoskeleton; 1998 Jul 01; 40(3):211-9. PubMed ID: 9678665
    [Abstract] [Full Text] [Related]

  • 19. Characterization of novel F-actin envelopes surrounding nuclei during cleavage of a polychaete worm.
    Jacobsohn S.
    Int J Dev Biol; 1999 Jan 01; 43(1):19-26. PubMed ID: 10213079
    [Abstract] [Full Text] [Related]

  • 20. Simulation of density gradients of astral microtubules at cell surface in cytokinesis of sea urchin eggs.
    Yoshigaki T.
    J Theor Biol; 1999 Jan 21; 196(2):211-24. PubMed ID: 10049616
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.