These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 19732343
1. Snf1-independent, glucose-resistant transcription of Adr1-dependent genes in a mediator mutant of Saccharomyces cerevisiae. Young ET, Yen K, Dombek KM, Law GL, Chang E, Arms E. Mol Microbiol; 2009 Oct; 74(2):364-83. PubMed ID: 19732343 [Abstract] [Full Text] [Related]
2. Artificial recruitment of mediator by the DNA-binding domain of Adr1 overcomes glucose repression of ADH2 expression. Young ET, Tachibana C, Chang HW, Dombek KM, Arms EM, Biddick R. Mol Cell Biol; 2008 Apr; 28(8):2509-16. PubMed ID: 18250152 [Abstract] [Full Text] [Related]
3. Snf1 dependence of peroxisomal gene expression is mediated by Adr1. Ratnakumar S, Young ET. J Biol Chem; 2010 Apr 02; 285(14):10703-14. PubMed ID: 20139423 [Abstract] [Full Text] [Related]
4. Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. Young ET, Kacherovsky N, Van Riper K. J Biol Chem; 2002 Oct 11; 277(41):38095-103. PubMed ID: 12167649 [Abstract] [Full Text] [Related]
5. The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. Young ET, Zhang C, Shokat KM, Parua PK, Braun KA. J Biol Chem; 2012 Aug 17; 287(34):29021-34. PubMed ID: 22761425 [Abstract] [Full Text] [Related]
6. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. Young ET, Dombek KM, Tachibana C, Ideker T. J Biol Chem; 2003 Jul 11; 278(28):26146-58. PubMed ID: 12676948 [Abstract] [Full Text] [Related]
7. Snf1 controls the activity of adr1 through dephosphorylation of Ser230. Ratnakumar S, Kacherovsky N, Arms E, Young ET. Genetics; 2009 Jul 11; 182(3):735-45. PubMed ID: 19398770 [Abstract] [Full Text] [Related]
8. 14-3-3 (Bmh) proteins regulate combinatorial transcription following RNA polymerase II recruitment by binding at Adr1-dependent promoters in Saccharomyces cerevisiae. Braun KA, Parua PK, Dombek KM, Miner GE, Young ET. Mol Cell Biol; 2013 Feb 11; 33(4):712-24. PubMed ID: 23207903 [Abstract] [Full Text] [Related]
9. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Dombek KM, Camier S, Young ET. Mol Cell Biol; 1993 Jul 11; 13(7):4391-9. PubMed ID: 8321238 [Abstract] [Full Text] [Related]
10. Snf1-dependent and Snf1-independent pathways of constitutive ADH2 expression in Saccharomyces cerevisiae. Voronkova V, Kacherovsky N, Tachibana C, Yu D, Young ET. Genetics; 2006 Apr 11; 172(4):2123-38. PubMed ID: 16415371 [Abstract] [Full Text] [Related]
11. Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product. Braun KA, Dombek KM, Young ET. Mol Cell Biol; 2016 Feb 15; 36(4):628-44. PubMed ID: 26667037 [Abstract] [Full Text] [Related]
12. Factors affecting Saccharomyces cerevisiae ADH2 chromatin remodeling and transcription. Verdone L, Cesari F, Denis CL, Di Mauro E, Caserta M. J Biol Chem; 1997 Dec 05; 272(49):30828-34. PubMed ID: 9388226 [Abstract] [Full Text] [Related]
13. Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions. Parua PK, Dombek KM, Young ET. J Biol Chem; 2014 Dec 19; 289(51):35542-60. PubMed ID: 25355315 [Abstract] [Full Text] [Related]
14. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Walther K, Schüller HJ. Microbiology (Reading); 2001 Aug 19; 147(Pt 8):2037-2044. PubMed ID: 11495982 [Abstract] [Full Text] [Related]
15. The CCR1 (SNF1) and SCH9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator ADR1 in controlling yeast ADH2 expression. Denis CL, Audino DC. Mol Gen Genet; 1991 Oct 19; 229(3):395-9. PubMed ID: 1944227 [Abstract] [Full Text] [Related]
16. Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1. Dombek KM, Young ET. Mol Cell Biol; 1997 Mar 19; 17(3):1450-8. PubMed ID: 9032272 [Abstract] [Full Text] [Related]
17. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Cook WJ, Chase D, Audino DC, Denis CL. Mol Cell Biol; 1994 Jan 19; 14(1):629-40. PubMed ID: 8264631 [Abstract] [Full Text] [Related]
18. Evolution of a glucose-regulated ADH gene in the genus Saccharomyces. Young ET, Sloan J, Miller B, Li N, van Riper K, Dombek KM. Gene; 2000 Mar 21; 245(2):299-309. PubMed ID: 10717481 [Abstract] [Full Text] [Related]
19. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae. Agricola E, Verdone L, Xella B, Di Mauro E, Caserta M. Biochemistry; 2004 Jul 13; 43(27):8878-84. PubMed ID: 15236596 [Abstract] [Full Text] [Related]
20. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Vallari RC, Cook WJ, Audino DC, Morgan MJ, Jensen DE, Laudano AP, Denis CL. Mol Cell Biol; 1992 Apr 13; 12(4):1663-73. PubMed ID: 1549119 [Abstract] [Full Text] [Related] Page: [Next] [New Search]