These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 19734712
21. The origin of Ceratocystis fagacearum, the oak wilt fungus. Juzwik J, Harrington TC, MacDonald WL, Appel DN. Annu Rev Phytopathol; 2008; 46():13-26. PubMed ID: 18680421 [Abstract] [Full Text] [Related]
22. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits. Amiri A, Holb IJ, Schnabel G. Phytopathology; 2009 Oct; 99(10):1199-208. PubMed ID: 19740034 [Abstract] [Full Text] [Related]
23. [Mycobiota of Quercus robur L. from the oak forest in the Zhytomyr region]. Kurchenko IM, Sokolova OV, Orlov OO, Iur'ieva OM, Ivaniuk TM. Mikrobiol Z; 2009 Oct; 71(5):23-33. PubMed ID: 20458934 [Abstract] [Full Text] [Related]
24. Symbiotic Fungi of an Ambrosia Beetle Alter the Volatile Bouquet of Cork Oak Seedlings. Nones S, Sousa E, Holighaus G. Phytopathology; 2022 Sep; 112(9):1965-1978. PubMed ID: 35357159 [Abstract] [Full Text] [Related]
25. An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Li S, Jochum CC, Yu F, Zaleta-Rivera K, Du L, Harris SD, Yuen GY. Phytopathology; 2008 Jun; 98(6):695-701. PubMed ID: 18944294 [Abstract] [Full Text] [Related]
26. Assessment of Mycosphaerella graminicola resistance to azoxystrobin. Siah A, Deweer C, Morand E, Reignault P, Halama P. Commun Agric Appl Biol Sci; 2008 Jun; 73(2):41-9. PubMed ID: 19226740 [Abstract] [Full Text] [Related]
27. Armillaria mellea as a cause of oak decline in Hatam-baigh forest of Iran. Davari M, Askari B. Commun Agric Appl Biol Sci; 2005 Jun; 70(3):295-304. PubMed ID: 16637190 [Abstract] [Full Text] [Related]
28. Pathology of oak-wisteria powdery mildew. Cook RT, Denton JO, Denton G. Fungal Biol; 2015 Aug; 119(8):657-71. PubMed ID: 26228557 [Abstract] [Full Text] [Related]
29. Bioconversion of silver salt into silver nanoparticles using different microorganisms. Karmakar S, Kundu S, Kundu K. Artif Cells Blood Substit Immobil Biotechnol; 2010 Oct; 38(5):259-66. PubMed ID: 20670108 [Abstract] [Full Text] [Related]
30. Antifungal activity of silver nanoparticles against Candida spp. Panácek A, Kolár M, Vecerová R, Prucek R, Soukupová J, Krystof V, Hamal P, Zboril R, Kvítek L. Biomaterials; 2009 Oct; 30(31):6333-40. PubMed ID: 19698988 [Abstract] [Full Text] [Related]
31. Quantitative analysis of phytopathogenic ascomycota on leaves of pedunculate oaks (Quercus robur L.) by real-time PCR. Heuser T, Zimmer W. FEMS Microbiol Lett; 2002 Apr 09; 209(2):295-9. PubMed ID: 12007821 [Abstract] [Full Text] [Related]
32. Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. Dojčilović R, Pajović JD, Božanić DK, Bogdanović U, Vodnik VV, Dimitrijević-Branković S, Miljković MG, Kaščaková S, Réfrégiers M, Djoković V. Colloids Surf B Biointerfaces; 2017 Jul 01; 155():341-348. PubMed ID: 28454063 [Abstract] [Full Text] [Related]
33. Sensitivity of different zygomycetes to the Penicillium chrysogenum antifungal protein (PAF). Galgóczy L, Papp T, Leiter E, Marx F, Pócsi I, Vágvölgyi C. J Basic Microbiol; 2005 Jul 01; 45(2):136-41. PubMed ID: 15812858 [Abstract] [Full Text] [Related]
34. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. Barna B, Leiter E, Hegedus N, Bíró T, Pócsi I. J Basic Microbiol; 2008 Dec 01; 48(6):516-20. PubMed ID: 18798177 [Abstract] [Full Text] [Related]
35. Interaction of antifungal peptide BP15 with Stemphylium vesicarium, the causal agent of brown spot of pear. Puig M, Moragrega C, Ruz L, Calderón CE, Cazorla FM, Montesinos E, Llorente I. Fungal Biol; 2016 Jan 01; 120(1):61-71. PubMed ID: 26693685 [Abstract] [Full Text] [Related]
36. Draft Genome Sequence of the Fungus Associated with Oak Wilt Mortality in South Korea, Raffaelea quercus-mongolicae KACC44405. Jeon J, Kim KT, Song H, Lee GW, Cheong K, Kim H, Choi G, Lee YH, Stewart JE, Klopfenstein NB, Kim MS. Genome Announc; 2017 Aug 24; 5(34):. PubMed ID: 28839019 [Abstract] [Full Text] [Related]
37. Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Moricca S, Ragazzi A. Phytopathology; 2008 Apr 24; 98(4):380-6. PubMed ID: 18944185 [Abstract] [Full Text] [Related]
38. Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline. Fernandes I, Alves A, Correia A, Devreese B, Esteves AC. Fungal Biol; 2014 Apr 24; 118(5-6):516-23. PubMed ID: 24863480 [Abstract] [Full Text] [Related]
39. Postinfection Activity of Synthetic Antimicrobial Peptides Against Stemphylium vesicarium in Pear. Puig M, Moragrega C, Ruz L, Montesinos E, Llorente I. Phytopathology; 2014 Nov 24; 104(11):1192-200. PubMed ID: 24875384 [Abstract] [Full Text] [Related]
40. Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Maciá-Vicente JG, Jansson HB, Mendgen K, Lopez-Llorca LV. Can J Microbiol; 2008 Aug 24; 54(8):600-9. PubMed ID: 18772922 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]