These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Arabidopsis thaliana GLX2-1 contains a dinuclear metal binding site, but is not a glyoxalase 2. Limphong P, Crowder MW, Bennett B, Makaroff CA. Biochem J; 2009 Jan 01; 417(1):323-30. PubMed ID: 18782082 [Abstract] [Full Text] [Related]
3. Structural studies on a mitochondrial glyoxalase II. Marasinghe GP, Sander IM, Bennett B, Periyannan G, Yang KW, Makaroff CA, Crowder MW. J Biol Chem; 2005 Dec 09; 280(49):40668-75. PubMed ID: 16227621 [Abstract] [Full Text] [Related]
4. The binding of iron and zinc to glyoxalase II occurs exclusively as di-metal centers and is unique within the metallo-beta-lactamase family. Wenzel NF, Carenbauer AL, Pfiester MP, Schilling O, Meyer-Klaucke W, Makaroff CA, Crowder MW. J Biol Inorg Chem; 2004 Jun 09; 9(4):429-38. PubMed ID: 15067523 [Abstract] [Full Text] [Related]
5. The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins. Pettinati I, Brem J, Lee SY, McHugh PJ, Schofield CJ. Trends Biochem Sci; 2016 Apr 09; 41(4):338-355. PubMed ID: 26805042 [Abstract] [Full Text] [Related]
6. Glyoxalase II from A. thaliana requires Zn(II) for catalytic activity. Crowder MW, Maiti MK, Banovic L, Makaroff CA. FEBS Lett; 1997 Dec 01; 418(3):351-4. PubMed ID: 9428743 [Abstract] [Full Text] [Related]
7. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth. Devanathan S, Erban A, Perez-Torres R, Kopka J, Makaroff CA. PLoS One; 2014 Dec 01; 9(4):e95971. PubMed ID: 24760003 [Abstract] [Full Text] [Related]
8. Identification of putative zinc hydrolase genes of the metallo-beta-lactamase superfamily from Campylobacter jejuni. Alfredson DA, Korolik V. FEMS Immunol Med Microbiol; 2007 Feb 01; 49(1):159-64. PubMed ID: 17266723 [Abstract] [Full Text] [Related]
9. Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo. Schilling O, Wenzel N, Naylor M, Vogel A, Crowder M, Makaroff C, Meyer-Klaucke W. Biochemistry; 2003 Oct 14; 42(40):11777-86. PubMed ID: 14529289 [Abstract] [Full Text] [Related]
10. Biochemical characterization of the carbapenem-hydrolyzing beta-lactamase AsbM1 from Aeromonas sobria AER 14M: a member of a novel subgroup of metallo-beta-lactamases. Yang Y, Bush K. FEMS Microbiol Lett; 1996 Apr 01; 137(2-3):193-200. PubMed ID: 8998985 [Abstract] [Full Text] [Related]
11. Converting GLX2-1 into an active glyoxalase II. Limphong P, Adams NE, Rouhier MF, McKinney RM, Naylor M, Bennett B, Makaroff CA, Crowder MW. Biochemistry; 2010 Sep 21; 49(37):8228-36. PubMed ID: 20715794 [Abstract] [Full Text] [Related]
12. Kinetics study of KPC-3, a plasmid-encoded class A carbapenem-hydrolyzing beta-lactamase. Alba J, Ishii Y, Thomson K, Moland ES, Yamaguchi K. Antimicrob Agents Chemother; 2005 Nov 21; 49(11):4760-2. PubMed ID: 16251324 [Abstract] [Full Text] [Related]
13. Design and evolution of new catalytic activity with an existing protein scaffold. Park HS, Nam SH, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim HS. Science; 2006 Jan 27; 311(5760):535-8. PubMed ID: 16439663 [Abstract] [Full Text] [Related]
14. Molecular characterization of glyoxalase II from Arabidopsis thaliana. Maiti MK, Krishnasamy S, Owen HA, Makaroff CA. Plant Mol Biol; 1997 Nov 27; 35(4):471-81. PubMed ID: 9349270 [Abstract] [Full Text] [Related]
15. Promiscuous metallo-β-lactamases: MIM-1 and MIM-2 may play an essential role in quorum sensing networks. Miraula M, Schenk G, Mitić N. J Inorg Biochem; 2016 Sep 27; 162():366-375. PubMed ID: 26775612 [Abstract] [Full Text] [Related]
16. Identification and characterization of a new metallo-beta-lactamase, IND-5, from a clinical isolate of Chryseobacterium indologenes. Perilli M, Caporale B, Celenza G, Pellegrini C, Docquier JD, Mezzatesta M, Rossolini GM, Stefani S, Amicosante G. Antimicrob Agents Chemother; 2007 Aug 27; 51(8):2988-90. PubMed ID: 17470648 [Abstract] [Full Text] [Related]
17. Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase. Stamp AL, Owen P, El Omari K, Nichols CE, Lockyer M, Lamb HK, Charles IG, Hawkins AR, Stammers DK. Protein Sci; 2010 Oct 27; 19(10):1897-905. PubMed ID: 20669241 [Abstract] [Full Text] [Related]
18. Responses of the chloroplast glyoxalase system to high CO2 concentrations. Shimakawa G, Ifuku K, Suzuki Y, Makino A, Ishizaki K, Fukayama H, Morita R, Sakamoto K, Nishi A, Miyake C. Biosci Biotechnol Biochem; 2018 Dec 27; 82(12):2072-2083. PubMed ID: 30122118 [Abstract] [Full Text] [Related]
19. Biochemistry. Loop grafting and the origins of enzyme species. Tawfik DS. Science; 2006 Jan 27; 311(5760):475-6. PubMed ID: 16439649 [No Abstract] [Full Text] [Related]
20. Explaining the inhibition of glyoxalase II by 9-fluorenylmethoxycarbonyl-protected glutathione derivatives. Yang KW, Sobieski DN, Carenbauer AL, Crawford PA, Makaroff CA, Crowder MW. Arch Biochem Biophys; 2003 Jun 15; 414(2):271-8. PubMed ID: 12781779 [Abstract] [Full Text] [Related] Page: [Next] [New Search]