These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


378 related items for PubMed ID: 19739702

  • 1. Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon.
    Shiori Y, Hiryu S, Watanabe Y, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2009 Sep; 126(3):EL80-5. PubMed ID: 19739702
    [Abstract] [Full Text] [Related]

  • 2. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watanabe Y.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [Abstract] [Full Text] [Related]

  • 3. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum).
    Kobayasi KI, Hiryu S, Shimozawa R, Riquimaroux H.
    J Acoust Soc Am; 2012 Nov; 132(5):EL417-22. PubMed ID: 23145704
    [Abstract] [Full Text] [Related]

  • 4. Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field.
    Hiryu S, Hagino T, Fujioka E, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2008 Aug; 124(2):EL51-6. PubMed ID: 18681502
    [Abstract] [Full Text] [Related]

  • 5. Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses.
    Luo F, Metzner W, Wu F, Zhang S, Chen Q.
    J Neurophysiol; 2008 Jan; 99(1):284-96. PubMed ID: 18003879
    [Abstract] [Full Text] [Related]

  • 6. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N, Hiryu S, Fujioka E, Yamada Y, Riquimaroux H, Watanabe Y.
    J Exp Biol; 2013 Apr 01; 216(Pt 7):1210-8. PubMed ID: 23487269
    [Abstract] [Full Text] [Related]

  • 7. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.
    Tian B, Schnitzler HU.
    J Acoust Soc Am; 1997 Apr 01; 101(4):2347-64. PubMed ID: 9104033
    [Abstract] [Full Text] [Related]

  • 8. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight.
    Yamada Y, Hiryu S, Watanabe Y.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov 01; 202(11):791-801. PubMed ID: 27566319
    [Abstract] [Full Text] [Related]

  • 9. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.
    Mantani S, Hiryu S, Fujioka E, Matsuta N, Riquimaroux H, Watanabe Y.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct 01; 198(10):741-51. PubMed ID: 22777677
    [Abstract] [Full Text] [Related]

  • 10. Auditory-feedback control of temporal call patterns in echolocating horseshoe bats.
    Smotherman M, Metzner W.
    J Neurophysiol; 2005 Mar 01; 93(3):1295-303. PubMed ID: 15496485
    [Abstract] [Full Text] [Related]

  • 11. Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system.
    Fujioka E, Mantani S, Hiryu S, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2011 Feb 01; 129(2):1081-8. PubMed ID: 21361464
    [Abstract] [Full Text] [Related]

  • 12. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.
    Hiryu S, Hagino T, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2007 Mar 01; 121(3):1749-57. PubMed ID: 17407911
    [Abstract] [Full Text] [Related]

  • 13. Flight and echolocation behaviour of whiskered bats commuting along a hedgerow: range-dependent sonar signal design, Doppler tolerance and evidence for 'acoustic focussing'.
    Holderied MW, Jones G, von Helversen O.
    J Exp Biol; 2006 May 01; 209(Pt 10):1816-26. PubMed ID: 16651548
    [Abstract] [Full Text] [Related]

  • 14. Aerial hawking and landing: approach behaviour in Natterer's bats, Myotis nattereri (Kuhl 1818).
    Melcón ML, Denzinger A, Schnitzler HU.
    J Exp Biol; 2007 Dec 01; 210(Pt 24):4457-64. PubMed ID: 18055634
    [Abstract] [Full Text] [Related]

  • 15. Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats.
    Smotherman M, Metzner W.
    J Neurophysiol; 2003 Feb 01; 89(2):814-21. PubMed ID: 12574459
    [Abstract] [Full Text] [Related]

  • 16. A modeling approach to explain pulse design in bats.
    Boonman A, Ostwald J.
    Biol Cybern; 2007 Aug 01; 97(2):159-72. PubMed ID: 17610077
    [Abstract] [Full Text] [Related]

  • 17. Compressive sensing: a strategy for fluttering target discrimination employed by bats emitting broadband calls.
    Fontaine B, Peremans H.
    J Acoust Soc Am; 2011 Feb 01; 129(2):1100-10. PubMed ID: 21361466
    [Abstract] [Full Text] [Related]

  • 18. Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry.
    Holderied MW, Korine C, Fenton MB, Parsons S, Robson S, Jones G.
    J Exp Biol; 2005 Apr 01; 208(Pt 7):1321-7. PubMed ID: 15781892
    [Abstract] [Full Text] [Related]

  • 19. Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.
    Kinoshita Y, Ogata D, Watanabe Y, Riquimaroux H, Ohta T, Hiryu S.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep 01; 200(9):799-809. PubMed ID: 24958227
    [Abstract] [Full Text] [Related]

  • 20. Evolution of high duty cycle echolocation in bats.
    Fenton MB, Faure PA, Ratcliffe JM.
    J Exp Biol; 2012 Sep 01; 215(Pt 17):2935-44. PubMed ID: 22875762
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.