These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
489 related items for PubMed ID: 19741516
1. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders. Koopman R, Ryall JG, Church JE, Lynch GS. Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):601-6. PubMed ID: 19741516 [Abstract] [Full Text] [Related]
4. Mechanisms to explain wasting of muscle and fat in cancer cachexia. Argilés JM, López-Soriano FJ, Busquets S. Curr Opin Support Palliat Care; 2007 Dec; 1(4):293-8. PubMed ID: 18685378 [Abstract] [Full Text] [Related]
8. Novel role for ß-adrenergic signalling in skeletal muscle growth, development and regeneration. Ryall JG, Church JE, Lynch GS. Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):397-401. PubMed ID: 19793099 [Abstract] [Full Text] [Related]
9. Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis. Costelli P, Baccino FM. Curr Opin Clin Nutr Metab Care; 2003 Jul; 6(4):407-12. PubMed ID: 12806214 [Abstract] [Full Text] [Related]
10. Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Busquets S, Figueras MT, Fuster G, Almendro V, Moore-Carrasco R, Ametller E, Argilés JM, López-Soriano FJ. Cancer Res; 2004 Sep 15; 64(18):6725-31. PubMed ID: 15374990 [Abstract] [Full Text] [Related]
11. Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy. Glover EI, Phillips SM. Curr Opin Clin Nutr Metab Care; 2010 Nov 15; 13(6):630-4. PubMed ID: 20829685 [Abstract] [Full Text] [Related]
12. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting. Tisdale MJ. J Support Oncol; 2005 Nov 15; 3(3):209-17. PubMed ID: 15915823 [Abstract] [Full Text] [Related]
13. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Pharmacol Res; 2015 Sep 15; 99():86-100. PubMed ID: 26048279 [Abstract] [Full Text] [Related]
14. Muscle wasting in cardiac cachexia. Strassburg S, Springer J, Anker SD. Int J Biochem Cell Biol; 2005 Oct 15; 37(10):1938-47. PubMed ID: 15927519 [Abstract] [Full Text] [Related]
15. Apoptosis signalling is essential and precedes protein degradation in wasting skeletal muscle during catabolic conditions. Argilés JM, López-Soriano FJ, Busquets S. Int J Biochem Cell Biol; 2008 Oct 15; 40(9):1674-8. PubMed ID: 18329944 [Abstract] [Full Text] [Related]
16. The AP-1/CJUN signaling cascade is involved in muscle differentiation: implications in muscle wasting during cancer cachexia. Moore-Carrasco R, García-Martínez C, Busquets S, Ametller E, Barreiro E, López-Soriano FJ, Argilés JM. FEBS Lett; 2006 Jan 23; 580(2):691-6. PubMed ID: 16412434 [Abstract] [Full Text] [Related]
17. Acylated and unacylated ghrelin administration to blunt muscle wasting. Reano S, Graziani A, Filigheddu N. Curr Opin Clin Nutr Metab Care; 2014 May 23; 17(3):236-40. PubMed ID: 24572833 [Abstract] [Full Text] [Related]
18. Cardiac implications for the use of beta2-adrenoceptor agonists for the management of muscle wasting. Molenaar P, Chen L, Parsonage WA. Br J Pharmacol; 2006 Mar 23; 147(6):583-6. PubMed ID: 16432500 [Abstract] [Full Text] [Related]
19. Interleukin-15 antagonizes muscle protein waste in tumour-bearing rats. Carbó N, López-Soriano J, Costelli P, Busquets S, Alvarez B, Baccino FM, Quinn LS, López-Soriano FJ, Argilés JM. Br J Cancer; 2000 Aug 23; 83(4):526-31. PubMed ID: 10945502 [Abstract] [Full Text] [Related]
20. The possible role of myostatin in skeletal muscle atrophy and cachexia. Jespersen J, Kjaer M, Schjerling P. Scand J Med Sci Sports; 2006 Apr 23; 16(2):74-82. PubMed ID: 16533345 [Abstract] [Full Text] [Related] Page: [Next] [New Search]