These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 1974515
1. Effect of anticonvulsant treatment on kainic acid-induced increases in peptide levels. Marksteiner J, Prommegger R, Sperk G. Eur J Pharmacol; 1990 Jun 08; 181(3):241-6. PubMed ID: 1974515 [Abstract] [Full Text] [Related]
2. Concomitant increase of somatostatin, neuropeptide Y and glutamate decarboxylase in the frontal cortex of rats with decreased seizure threshold. Marksteiner J, Sperk G. Neuroscience; 1988 Aug 08; 26(2):379-85. PubMed ID: 2902535 [Abstract] [Full Text] [Related]
6. Pronounced increases in brain levels of calcitonin gene-related peptide after kainic acid induced seizures. Saria A, Marksteiner J, Humpel C, Sperk G. Regul Pept; 1989 Dec 08; 26(3):215-23. PubMed ID: 2516343 [Abstract] [Full Text] [Related]
7. Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat. Sperk G, Marksteiner J, Gruber B, Bellmann R, Mahata M, Ortler M. Neuroscience; 1992 Oct 08; 50(4):831-46. PubMed ID: 1360155 [Abstract] [Full Text] [Related]
8. Modulatory role of neuropeptides in seizures induced in rats by stimulation of glutamate receptors. Vezzani A, Rizzi M, Conti M, Samanin R. J Nutr; 2000 Apr 08; 130(4S Suppl):1046S-8S. PubMed ID: 10736379 [Abstract] [Full Text] [Related]
11. Anticonvulsant action of a non-competitive antagonist of NMDA receptors (MK-801) in the kindling model of epilepsy. Sato K, Morimoto K, Okamoto M. Brain Res; 1988 Oct 25; 463(1):12-20. PubMed ID: 2848606 [Abstract] [Full Text] [Related]
12. Anticonvulsant and antioxidant effects of 3-alkynyl selenophene in 21-day-old rats on pilocarpine model of seizures. Wilhelm EA, Jesse CR, Bortolatto CF, Nogueira CW, Savegnago L. Brain Res Bull; 2009 Jun 30; 79(5):281-7. PubMed ID: 19480988 [Abstract] [Full Text] [Related]
14. Choline acetyltransferase, glutamic acid decarboxylase and somatostatin in the kainic acid model for chronic temporal lobe epilepsy. Baran H, Kepplinger B, Draxler M, Skofitsch G. Neurosignals; 2004 Jun 30; 13(6):290-7. PubMed ID: 15627816 [Abstract] [Full Text] [Related]
15. Enhanced rate of expression and biosynthesis of neuropeptide Y after kainic acid-induced seizures. Bellmann R, Widmann R, Olenik C, Meyer DK, Maas D, Marksteiner J, Sperk G. J Neurochem; 1991 Feb 30; 56(2):525-30. PubMed ID: 1988555 [Abstract] [Full Text] [Related]
16. Anticonvulsant effects of methyl ethyl ketone and diethyl ketone in several types of mouse seizure models. Hasebe N, Abe K, Sugiyama E, Hosoi R, Inoue O. Eur J Pharmacol; 2010 Sep 10; 642(1-3):66-71. PubMed ID: 20553923 [Abstract] [Full Text] [Related]
18. Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Woldbye DP, Larsen PJ, Mikkelsen JD, Klemp K, Madsen TM, Bolwig TG. Nat Med; 1997 Jul 10; 3(7):761-4. PubMed ID: 9212103 [Abstract] [Full Text] [Related]
19. Stimulation of 5-HT1A receptors in the dorsal hippocampus and inhibition of limbic seizures induced by kainic acid in rats. Gariboldi M, Tutka P, Samanin R, Vezzani A. Br J Pharmacol; 1996 Nov 10; 119(5):813-8. PubMed ID: 8922726 [Abstract] [Full Text] [Related]