These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 19748651

  • 1. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles.
    Xiong Z, He F, Zhao D, Barnett MO.
    Water Res; 2009 Dec; 43(20):5171-9. PubMed ID: 19748651
    [Abstract] [Full Text] [Related]

  • 2. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y, Liu Y, Xiong Z, Kaback D, Zhao D.
    Nanotechnology; 2012 Jul 27; 23(29):294007. PubMed ID: 22743738
    [Abstract] [Full Text] [Related]

  • 3. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.
    Van Koetsem F, Van Havere L, Du Laing G.
    J Environ Manage; 2016 Mar 01; 168():210-8. PubMed ID: 26708651
    [Abstract] [Full Text] [Related]

  • 4. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P, He F, Zhao D, Aiken B, Feldman L.
    J Contam Hydrol; 2010 Jul 30; 116(1-4):35-46. PubMed ID: 20542350
    [Abstract] [Full Text] [Related]

  • 5. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments.
    Belzile N, Lang CY, Chen YW, Wang M.
    Sci Total Environ; 2008 Nov 01; 405(1-3):226-38. PubMed ID: 18657305
    [Abstract] [Full Text] [Related]

  • 6. Temporal and spatial distributions of sediment mercury at salt pond wetland restoration sites, San Francisco Bay, CA, USA.
    Miles AK, Ricca MA.
    Sci Total Environ; 2010 Feb 01; 408(5):1154-65. PubMed ID: 19922978
    [Abstract] [Full Text] [Related]

  • 7. Mercury speciation in the Valdeazogues River-La Serena Reservoir system: influence of Almadén (Spain) historic mining activities.
    Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Moreno MJ.
    Sci Total Environ; 2009 Mar 15; 407(7):2372-82. PubMed ID: 19167027
    [Abstract] [Full Text] [Related]

  • 8. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles.
    Liang Q, Zhao D.
    J Hazard Mater; 2014 Apr 30; 271():16-23. PubMed ID: 24584068
    [Abstract] [Full Text] [Related]

  • 9. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B, Zhao D.
    J Hazard Mater; 2012 Apr 15; 211-212():332-41. PubMed ID: 22119304
    [Abstract] [Full Text] [Related]

  • 10. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry.
    Gong Y, Liu Y, Xiong Z, Zhao D.
    Environ Sci Technol; 2014 Apr 01; 48(7):3986-94. PubMed ID: 24568693
    [Abstract] [Full Text] [Related]

  • 11. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W, Liang Q, Qian T, Zhao D.
    Water Res; 2015 Mar 01; 70():485-94. PubMed ID: 25577492
    [Abstract] [Full Text] [Related]

  • 12. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
    Xu Y, Zhao D.
    Water Res; 2007 May 01; 41(10):2101-8. PubMed ID: 17412389
    [Abstract] [Full Text] [Related]

  • 13. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: Immobilization performance and mechanisms, effects on soil properties, and life cycle assessment.
    Lin D, Hu G, Li H, Wu F, Li L, Yang G, Zhuang L, Gong Y.
    Sci Total Environ; 2024 Sep 20; 944():173928. PubMed ID: 38871308
    [Abstract] [Full Text] [Related]

  • 14. The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir, Guizhou province, China.
    Yan H, Feng X, Shang L, Qiu G, Dai Q, Wang S, Hou Y.
    Sci Total Environ; 2008 Dec 15; 407(1):497-506. PubMed ID: 18945477
    [Abstract] [Full Text] [Related]

  • 15. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California.
    Meador JP, Ernest DW, Kagley AN.
    Sci Total Environ; 2005 Mar 01; 339(1-3):189-205. PubMed ID: 15740769
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh.
    Ullrich SM, Ilyushchenko MA, Kamberov IM, Tanton TW.
    Sci Total Environ; 2007 Aug 01; 381(1-3):1-16. PubMed ID: 17475310
    [Abstract] [Full Text] [Related]

  • 19. Sediment mercury dynamics and historical trends of mercury deposition in the St. Lawrence River area of concern near Cornwall, Ontario, Canada.
    Delongchamp TM, Lean DR, Ridal JJ, Blais JM.
    Sci Total Environ; 2009 Jun 15; 407(13):4095-104. PubMed ID: 19394069
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.