These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


394 related items for PubMed ID: 19751052

  • 1. Facile and controllable loading of single-stranded DNA on gold nanoparticles.
    Zu Y, Gao Z.
    Anal Chem; 2009 Oct 15; 81(20):8523-8. PubMed ID: 19751052
    [Abstract] [Full Text] [Related]

  • 2. Controllable g5p-protein-directed aggregation of ssDNA-gold nanoparticles.
    Lee SK, Maye MM, Zhang YB, Gang O, van der Lelie D.
    Langmuir; 2009 Jan 20; 25(2):657-60. PubMed ID: 19072316
    [Abstract] [Full Text] [Related]

  • 3. Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation.
    Zhao W, Lin L, Hsing IM.
    Bioconjug Chem; 2009 Jun 20; 20(6):1218-22. PubMed ID: 19425573
    [Abstract] [Full Text] [Related]

  • 4. Contribution of nanoscale curvature to number density of immobilized DNA on gold nanoparticles.
    Kira A, Kim H, Yasuda K.
    Langmuir; 2009 Feb 03; 25(3):1285-8. PubMed ID: 19132834
    [Abstract] [Full Text] [Related]

  • 5. Selective DNA-mediated assembly of gold nanoparticles on electroded substrates.
    Sapsford KE, Park D, Goldman ER, Foos EE, Trammell SA, Lowy DA, Ancona MG.
    Langmuir; 2008 Sep 16; 24(18):10245-52. PubMed ID: 18702477
    [Abstract] [Full Text] [Related]

  • 6. Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering.
    Falabella JB, Cho TJ, Ripple DC, Hackley VA, Tarlov MJ.
    Langmuir; 2010 Aug 03; 26(15):12740-7. PubMed ID: 20604538
    [Abstract] [Full Text] [Related]

  • 7. Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator.
    Shen Q, Nie Z, Guo M, Zhong CJ, Lin B, Li W, Yao S.
    Chem Commun (Camb); 2009 Feb 28; (8):929-31. PubMed ID: 19214319
    [Abstract] [Full Text] [Related]

  • 8. Periodic assembly of nanospecies on repetitive DNA sequences generated on gold nanoparticles by rolling circle amplification.
    Zhao W, Brook MA, Li Y.
    Methods Mol Biol; 2008 Feb 28; 474():79-90. PubMed ID: 19031062
    [Abstract] [Full Text] [Related]

  • 9. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions.
    Li B, Du Y, Dong S.
    Anal Chim Acta; 2009 Jun 30; 644(1-2):78-82. PubMed ID: 19463566
    [Abstract] [Full Text] [Related]

  • 10. Thiol-specific and nonspecific interactions between DNA and gold nanoparticles.
    Cárdenas M, Barauskas J, Schillén K, Brennan JL, Brust M, Nylander T.
    Langmuir; 2006 Mar 28; 22(7):3294-9. PubMed ID: 16548591
    [Abstract] [Full Text] [Related]

  • 11. Immobilization of single-stranded DNA by self-assembled polymer on gold substrate for a DNA chip.
    Taira S, Yokoyama K.
    Biotechnol Bioeng; 2005 Mar 30; 89(7):835-8. PubMed ID: 15690340
    [Abstract] [Full Text] [Related]

  • 12. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms.
    Tan YN, Lee KH, Su X.
    Anal Chem; 2011 Jun 01; 83(11):4251-7. PubMed ID: 21524056
    [Abstract] [Full Text] [Related]

  • 13. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip.
    Sato Y, Hosokawa K, Maeda M.
    Colloids Surf B Biointerfaces; 2008 Mar 15; 62(1):71-6. PubMed ID: 17976962
    [Abstract] [Full Text] [Related]

  • 14. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles.
    Wang W, Liu H, Liu D, Xu Y, Yang Y, Zhou D.
    Langmuir; 2007 Nov 20; 23(24):11956-9. PubMed ID: 17949023
    [Abstract] [Full Text] [Related]

  • 15. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes.
    Wang Y, Yang F, Yang X.
    Nanotechnology; 2010 May 21; 21(20):205502. PubMed ID: 20418604
    [Abstract] [Full Text] [Related]

  • 16. Melting temperature of surface-tethered DNA.
    Nasef H, Ozalp VC, Beni V, O'Sullivan CK.
    Anal Biochem; 2010 Nov 01; 406(1):34-40. PubMed ID: 20615383
    [Abstract] [Full Text] [Related]

  • 17. Topographical and functional characterization of the ssDNA probe layer generated through EDC-mediated covalent attachment to nanocrystalline diamond using fluorescence microscopy.
    Vermeeren V, Wenmackers S, Daenen M, Haenen K, Williams OA, Ameloot M, Vande Ven M, Wagner P, Michiels L.
    Langmuir; 2008 Aug 19; 24(16):9125-34. PubMed ID: 18627188
    [Abstract] [Full Text] [Related]

  • 18. Surface passivation improves the synthesis of highly stable and specific DNA-functionalized gold nanoparticles with variable DNA density.
    Deka J, Měch R, Ianeselli L, Amenitsch H, Cacho-Nerin F, Parisse P, Casalis L.
    ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):7033-40. PubMed ID: 25756758
    [Abstract] [Full Text] [Related]

  • 19. Kinetics and mechanism of single-stranded DNA adsorption onto citrate-stabilized gold nanoparticles in colloidal solution.
    Nelson EM, Rothberg LJ.
    Langmuir; 2011 Mar 01; 27(5):1770-7. PubMed ID: 21218826
    [Abstract] [Full Text] [Related]

  • 20. Hydroxylamine-amplified gold nanoparticles for the homogeneous detection of sequence-specific DNA.
    Fan A, Cai S, Cao Z, Lau C, Lu J.
    Analyst; 2010 Jun 01; 135(6):1400-5. PubMed ID: 20407685
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.