These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


439 related items for PubMed ID: 19762951

  • 1. Low density InAs/(In)GaAs quantum dots emitting at long wavelengths.
    Trevisi G, Seravalli L, Frigeri P, Franchi S.
    Nanotechnology; 2009 Oct 14; 20(41):415607. PubMed ID: 19762951
    [Abstract] [Full Text] [Related]

  • 2. The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures.
    Seravalli L, Trevisi G, Frigeri P, Franchi S, Geddo M, Guizzetti G.
    Nanotechnology; 2009 Jul 08; 20(27):275703. PubMed ID: 19531853
    [Abstract] [Full Text] [Related]

  • 3. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities.
    Lee A, Jiang Q, Tang M, Seeds A, Liu H.
    Opt Express; 2012 Sep 24; 20(20):22181-7. PubMed ID: 23037366
    [Abstract] [Full Text] [Related]

  • 4. InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well.
    Fu Y, Wang SM, Ferdos F, Sadeghi M, Larsson A.
    J Nanosci Nanotechnol; 2002 Sep 24; 2(3-4):421-6. PubMed ID: 12908273
    [Abstract] [Full Text] [Related]

  • 5. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.
    Tanabe K, Guimard D, Bordel D, Iwamoto S, Arakawa Y.
    Opt Express; 2010 May 10; 18(10):10604-8. PubMed ID: 20588912
    [Abstract] [Full Text] [Related]

  • 6. Enhanced spontaneous emission from InAs/GaAs quantum dots in pillar microcavities emitting at telecom wavelengths.
    Chauvin N, Balet L, Alloing B, Zinoni C, Li L, Fiore A, Grenouillet L, Gilet P, Olivier N, Tchelnokov A, Terrier M, Gérard JM.
    Opt Lett; 2007 Sep 15; 32(18):2747-9. PubMed ID: 17873956
    [Abstract] [Full Text] [Related]

  • 7. Site-controlled InGaAs quantum dots with tunable emission energy.
    Felici M, Gallo P, Mohan A, Dwir B, Rudra A, Kapon E.
    Small; 2009 Apr 15; 5(8):938-43. PubMed ID: 19235797
    [Abstract] [Full Text] [Related]

  • 8. Ultrafast carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure.
    Prasankumar RP, Attaluri RS, Averitt RD, Urayama J, Weisse-Bernstein N, Rotella P, Stintz AD, Krishna S, Taylor AJ.
    Opt Express; 2008 Jan 21; 16(2):1165-73. PubMed ID: 18542190
    [Abstract] [Full Text] [Related]

  • 9. Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers.
    Li F, Mi Z.
    Opt Express; 2009 Oct 26; 17(22):19933-9. PubMed ID: 19997217
    [Abstract] [Full Text] [Related]

  • 10. Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot.
    Verma VB, Stevens MJ, Silverman KL, Dias NL, Garg A, Coleman JJ, Mirin RP.
    Opt Express; 2011 Feb 28; 19(5):4182-7. PubMed ID: 21369247
    [Abstract] [Full Text] [Related]

  • 11. Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes.
    Li F, Mi Z, Vicknesh S.
    Opt Lett; 2009 Oct 01; 34(19):2915-7. PubMed ID: 19794766
    [Abstract] [Full Text] [Related]

  • 12. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate.
    Tanabe K, Nomura M, Guimard D, Iwamoto S, Arakawa Y.
    Opt Express; 2009 Apr 27; 17(9):7036-42. PubMed ID: 19399078
    [Abstract] [Full Text] [Related]

  • 13. Effect of temperature on the growth of InAs/GaAs quantum dots grown on a strained GaAs layer.
    Ahmad I, Avrutin V, Morkoç H, Moore JC, Baski AA.
    J Nanosci Nanotechnol; 2007 Aug 27; 7(8):2889-93. PubMed ID: 17685312
    [Abstract] [Full Text] [Related]

  • 14. High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability.
    Cao Y, Ji H, Xu P, Gu Y, Ma W, Yang T.
    Opt Lett; 2012 Oct 01; 37(19):4071-3. PubMed ID: 23027282
    [Abstract] [Full Text] [Related]

  • 15. Filling of hole arrays with InAs quantum dots.
    Lee JY, Noordhoek MJ, Smereka P, McKay H, Millunchick JM.
    Nanotechnology; 2009 Jul 15; 20(28):285305. PubMed ID: 19546494
    [Abstract] [Full Text] [Related]

  • 16. Theoretical study on controllability of quantum state energy in an InGaAs/GaAs quantum dot buried in InGaAs.
    Mukai K, Nakashima K.
    J Nanosci Nanotechnol; 2006 Dec 15; 6(12):3705-9. PubMed ID: 17256319
    [Abstract] [Full Text] [Related]

  • 17. A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap.
    Zhang ZY, Jiang Q, Luxmoore IJ, Hogg RA.
    Nanotechnology; 2009 Feb 04; 20(5):055204. PubMed ID: 19417341
    [Abstract] [Full Text] [Related]

  • 18. In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires.
    Heiss M, Ketterer B, Uccelli E, Morante JR, Arbiol J, Fontcuberta i Morral A.
    Nanotechnology; 2011 May 13; 22(19):195601. PubMed ID: 21430322
    [Abstract] [Full Text] [Related]

  • 19. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser.
    Djie HS, Ooi BS, Fang XM, Wu Y, Fastenau JM, Liu WK, Hopkinson M.
    Opt Lett; 2007 Jan 01; 32(1):44-6. PubMed ID: 17167578
    [Abstract] [Full Text] [Related]

  • 20. Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon.
    Yang J, Bhattacharya P.
    Opt Express; 2008 Mar 31; 16(7):5136-40. PubMed ID: 18542613
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.