These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 19763846

  • 21. Experimental results from the reaction of bromate ion with synthetic and real gastric juices.
    Keith JD, Pacey GE, Cotruvo JA, Gordon G.
    Toxicology; 2006 Apr 17; 221(2-3):225-8. PubMed ID: 16530909
    [Abstract] [Full Text] [Related]

  • 22. Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture.
    Wong BT, Lee DJ.
    Bioresour Technol; 2011 Jun 17; 102(12):6673-9. PubMed ID: 21507619
    [Abstract] [Full Text] [Related]

  • 23. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG, Ravichandra P, Joseph J, Jetty A, Sarma PN.
    J Hazard Mater; 2007 Aug 25; 147(3):718-25. PubMed ID: 17324510
    [Abstract] [Full Text] [Related]

  • 24. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.
    Lin S, Krause F, Voordouw G.
    Appl Microbiol Biotechnol; 2009 May 25; 83(2):369-76. PubMed ID: 19290520
    [Abstract] [Full Text] [Related]

  • 25. Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques.
    Gonzalez-Sanchez A, Tomas M, Dorado AD, Gamisans X, Guisasola A, Lafuente J, Gabriel D.
    Water Sci Technol; 2009 May 25; 59(7):1323-9. PubMed ID: 19380997
    [Abstract] [Full Text] [Related]

  • 26. Phylogenetic characterization of bromate-reducing microbial community enriched anaerobically from activated sludge.
    Wang D, Cai X, Lv X, Wang Y, Gao X, Zhu Y, Zhang T, Mao Y.
    Ecotoxicol Environ Saf; 2019 Nov 30; 184():109630. PubMed ID: 31520951
    [Abstract] [Full Text] [Related]

  • 27. Optimization of biological sulfide removal in a CSTR bioreactor.
    Roosta A, Jahanmiri A, Mowla D, Niazi A, Sotoodeh H.
    Bioprocess Biosyst Eng; 2012 Aug 30; 35(6):1005-10. PubMed ID: 22252421
    [Abstract] [Full Text] [Related]

  • 28. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: catalytic disproportionation of hypobromous acid.
    Liu C, von Gunten U, Croué JP.
    Environ Sci Technol; 2012 Oct 16; 46(20):11054-61. PubMed ID: 22963047
    [Abstract] [Full Text] [Related]

  • 29. Characterization of bromate-reducing bacterial isolates and their potential for drinking water treatment.
    Davidson AN, Chee-Sanford J, Lai HY, Ho CH, Klenzendorf JB, Kirisits MJ.
    Water Res; 2011 Nov 15; 45(18):6051-62. PubMed ID: 21943884
    [Abstract] [Full Text] [Related]

  • 30. Sulfide removal by moderate oxygenation of anaerobic sludge environments.
    van der Zee FP, Villaverde S, García PA, Fdz-Polanco F.
    Bioresour Technol; 2007 Feb 15; 98(3):518-24. PubMed ID: 16630720
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.
    Mora M, López LR, Lafuente J, Pérez J, Kleerebezem R, van Loosdrecht MC, Gamisans X, Gabriel D.
    Water Res; 2016 Feb 01; 89():282-92. PubMed ID: 26704759
    [Abstract] [Full Text] [Related]

  • 33. Thiosulfate Conversion to Sulfide by a Haloalkaliphilic Microbial Community in a Bioreactor Fed with H2 Gas.
    Sousa JA, Bijmans MF, Stams AJ, Plugge CM.
    Environ Sci Technol; 2017 Jan 17; 51(2):914-923. PubMed ID: 27997142
    [Abstract] [Full Text] [Related]

  • 34. Case Study: Microbial Ecology and Forensics of Chinese Drywall-Elemental Sulfur Disproportionation as Primary Generator of Hydrogen Sulfide.
    Tomei Torres FA.
    Microb Ecol; 2018 Jul 17; 76(1):37-48. PubMed ID: 28639032
    [Abstract] [Full Text] [Related]

  • 35. Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system.
    Manconi I, Carucci A, Lens P.
    Biotechnol Bioeng; 2007 Oct 15; 98(3):551-60. PubMed ID: 17724757
    [Abstract] [Full Text] [Related]

  • 36. Potential sulfur metabolisms and associated bacteria within anoxic surface sediment from saline meromictic Lake Kaiike (Japan).
    Koizumi Y, Kojima H, Fukui M.
    FEMS Microbiol Ecol; 2005 May 01; 52(3):297-305. PubMed ID: 16329915
    [Abstract] [Full Text] [Related]

  • 37. Hydrogen sulfide production from elemental sulfur by Desulfovibrio desulfuricans in an anaerobic bioreactor.
    Escobar C, Bravo L, Hernández J, Herrera L.
    Biotechnol Bioeng; 2007 Oct 15; 98(3):569-77. PubMed ID: 17421040
    [Abstract] [Full Text] [Related]

  • 38. Chemical and microbiological changes in laboratory incubations of nitrate amendment "sour" produced waters from three western Canadian oil fields.
    Eckford RE, Fedorak PM.
    J Ind Microbiol Biotechnol; 2002 Nov 15; 29(5):243-54. PubMed ID: 12407458
    [Abstract] [Full Text] [Related]

  • 39. Performance of a substratum-irradiated photosynthetic biofilm reactor for the removal of sulfide from wastewater.
    Hurse TJ, Keller J.
    Biotechnol Bioeng; 2004 Jul 05; 87(1):14-23. PubMed ID: 15211484
    [Abstract] [Full Text] [Related]

  • 40. Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review.
    Jahan BN, Li L, Pagilla KR.
    Chemosphere; 2021 Mar 05; 266():128964. PubMed ID: 33250222
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.