These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 19763876
21. Three-dimensional reconstruction allows accurate quantification and length measurements of coronary artery stenoses. Rittger H, Schertel B, Schmidt M, Justiz J, Brachmann J, Sinha AM. EuroIntervention; 2009 May; 5(1):127-32. PubMed ID: 19577994 [Abstract] [Full Text] [Related]
22. Three-dimensional vessel analyses provide more accurate length estimations than the gold standard QCA. Meerkin D, Marom H, Cohen-Biton O, Einav S. J Interv Cardiol; 2010 Apr; 23(2):152-9. PubMed ID: 20236215 [Abstract] [Full Text] [Related]
23. Comparison between two- and three-dimensional quantitative coronary angiography bifurcation analyses for the assessment of bifurcation lesions: A subanalysis of the TRYTON pivotal IDE coronary bifurcation trial. Muramatsu T, Grundeken MJ, Ishibashi Y, Nakatani S, Girasis C, Campos CM, Morel MA, Jonker H, de Winter RJ, Wykrzykowska JJ, García-García HM, Leon MB, Serruys PW, Onuma Y, TRYTON Pivotal IDE Coronary Bifurcation Trial Investigators. Catheter Cardiovasc Interv; 2015 Sep; 86(3):E140-9. PubMed ID: 25914327 [Abstract] [Full Text] [Related]
24. Diagnostic accuracy in coronary stenosis: comparison between visual score and quantitative analysis (quantitative computed tomographic angiography) in coronary angiography by multidetector computed tomography-coronary angiography and quantitative analysis (quantitative coronary angiography) in conventional coronary angiography. Malagò R, D'Onofrio M, Tavella D, Mantovani W, Brunelli S, Pezzato A, Caliari G, Nicolì L, Benussi P, Mucelli RP. J Comput Assist Tomogr; 2010 Sep; 34(5):652-9. PubMed ID: 20861765 [Abstract] [Full Text] [Related]
25. Advances in two-dimensional quantitative coronary angiographic assessment of bifurcation lesions: improved small lumen diameter detection and automatic reference vessel diameter derivation. Girasis C, Schuurbiers JC, Onuma Y, Aben JP, Weijers B, Morel MA, Wentzel JJ, Serruys PW. EuroIntervention; 2012 Mar; 7(11):1326-35. PubMed ID: 22433196 [Abstract] [Full Text] [Related]
26. 3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. Liao R, Luc D, Sun Y, Kirchberg K. Int J Cardiovasc Imaging; 2010 Oct; 26(7):733-49. PubMed ID: 19885737 [Abstract] [Full Text] [Related]
27. Validation of an accurate method for three-dimensional reconstruction and quantitative assessment of volumes, lengths and diameters of coronary vascular branches and segments from biplane angiographic projections. Wellnhofer E, Wahle A, Mugaragu I, Gross J, Oswald H, Fleck E. Int J Card Imaging; 1999 Oct; 15(5):339-53; discussion 355-6. PubMed ID: 10595401 [Abstract] [Full Text] [Related]
28. Comparison of 3-dimensional and 2-dimensional quantitative coronary angiography and intravascular ultrasound for functional assessment of coronary lesions. Nishi T, Kitahara H, Fujimoto Y, Nakayama T, Sugimoto K, Takahara M, Kobayashi Y. J Cardiol; 2017 Jan; 69(1):280-286. PubMed ID: 27293021 [Abstract] [Full Text] [Related]
29. A new method of three-dimensional coronary artery reconstruction from X-ray angiography: validation against a virtual phantom and multislice computed tomography. Andriotis A, Zifan A, Gavaises M, Liatsis P, Pantos I, Theodorakakos A, Efstathopoulos EP, Katritsis D. Catheter Cardiovasc Interv; 2008 Jan 01; 71(1):28-43. PubMed ID: 18098180 [Abstract] [Full Text] [Related]
30. Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W, Reiber JH. JACC Cardiovasc Interv; 2014 Jul 01; 7(7):768-77. PubMed ID: 25060020 [Abstract] [Full Text] [Related]
31. Clinical assessment of a new real time 3D quantitative coronary angiography system: evaluation in stented vessel segments. Gradaus R, Mathies K, Breithardt G, Böcker D. Catheter Cardiovasc Interv; 2006 Jul 01; 68(1):44-9. PubMed ID: 16770813 [Abstract] [Full Text] [Related]
32. In vitro validation of coronary CT angiography for the evaluation of complex lesions. Collet C, Onuma Y, Grundeken MJ, Miyazaki Y, Bittercourt M, Kitslaar P, Motoyama S, Ozaki Y, Asano T, Wentzel JJ, Streekstra GJ, Serruys PW, de Winter RJ, Planken RN. EuroIntervention; 2018 Feb 02; 13(15):e1823-e1830. PubMed ID: 28649954 [Abstract] [Full Text] [Related]
33. First direct in vivo comparison of two commercially available three-dimensional quantitative coronary angiography systems. Ramcharitar S, Daeman J, Patterson M, van Guens RJ, Boersma E, Serruys PW, van der Giessen WJ. Catheter Cardiovasc Interv; 2008 Jan 01; 71(1):44-50. PubMed ID: 18098181 [Abstract] [Full Text] [Related]
34. Comparison of two- and three-dimensional quantitative coronary angiography to intravascular ultrasound in the assessment of intermediate left main stenosis. Porto I, Dato I, Todaro D, Calabrese M, Rigattieri S, Leone AM, Niccoli G, Burzotta F, Trani C, Crea F. Am J Cardiol; 2012 Jun 01; 109(11):1600-7. PubMed ID: 22424580 [Abstract] [Full Text] [Related]
35. Vessel centerline reconstruction from non-isocentric and non-orthogonal paired monoplane angiographic images. Kunio M, O'Brien CC, Lopes AC, Bailey L, Lemos PA, Tearney GJ, Edelman ER. Int J Cardiovasc Imaging; 2018 May 01; 34(5):673-682. PubMed ID: 29139034 [Abstract] [Full Text] [Related]
36. Usefulness of the Finet law to guide stent size selection in ostial left main stenting: Comparison with standard angiographic estimation. Rigatelli G, Zuin M, Ronco F, Caprioglio F, Cavazzini D, Giatti S, Braggion G, Perilli S, Nguyen VT. Cardiovasc Revasc Med; 2018 Oct 01; 19(7 Pt A):751-754. PubMed ID: 29706477 [Abstract] [Full Text] [Related]
37. Impact of two formulas to calculate percentage diameter stenosis of coronary lesions: from stenosis models (phantom lesion model) to actual clinical lesions. Hideo-Kajita A, Wopperer S, Beyene SS, Meirovich YF, Melaku GD, Kuku KO, Brathwaite EJ, Ozaki Y, Dan K, Torguson R, Waksman R, Garcia-Garcia HM. Int J Cardiovasc Imaging; 2019 Dec 01; 35(12):2139-2146. PubMed ID: 31352559 [Abstract] [Full Text] [Related]
38. Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography. Boogers MJ, Schuijf JD, Kitslaar PH, van Werkhoven JM, de Graaf FR, Boersma E, van Velzen JE, Dijkstra J, Adame IM, Kroft LJ, de Roos A, Schreur JH, Heijenbrok MW, Jukema JW, Reiber JH, Bax JJ. JACC Cardiovasc Imaging; 2010 Jul 01; 3(7):699-709. PubMed ID: 20633847 [Abstract] [Full Text] [Related]
39. Percutaneous interventions in unprotected left main lesions: novel three-dimensional imaging and quantitative analysis before and after intervention. Dvir D, Assali A, Lev EI, Ben-Dor I, Battler A, Kornowski R. Cardiovasc Revasc Med; 2010 Jul 01; 11(4):236-40. PubMed ID: 20934656 [Abstract] [Full Text] [Related]
40. Automatic coronary blood flow computation: validation in quantitative flow ratio from coronary angiography. Zhang Y, Zhang S, Westra J, Ding D, Zhao Q, Yang J, Sun Z, Huang J, Pu J, Xu B, Tu S. Int J Cardiovasc Imaging; 2019 Apr 01; 35(4):587-595. PubMed ID: 30535657 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]