These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 19764169

  • 1. Morphological changes in the middle latency response using maximum length sequence stimuli.
    Nagle S, Musiek FE.
    J Am Acad Audiol; 2009 Sep; 20(8):492-502. PubMed ID: 19764169
    [Abstract] [Full Text] [Related]

  • 2. A comparison of binaural interactions using traditional and maximum length sequence evoked response paradigms.
    Lasky RE, Maier MM, Hecox K.
    Ear Hear; 1995 Aug; 16(4):354-60. PubMed ID: 8549891
    [Abstract] [Full Text] [Related]

  • 3. The feasibility of maximum length sequences to reduce acquisition time of the middle latency response.
    Bell SL, Allen R, Lutman ME.
    J Acoust Soc Am; 2001 Mar; 109(3):1073-81. PubMed ID: 11303921
    [Abstract] [Full Text] [Related]

  • 4. Are chirps better than clicks and tonebursts for evoking middle latency responses?
    Atcherson SR, Moore PC.
    J Am Acad Audiol; 2014 Jun; 25(6):576-83. PubMed ID: 25313547
    [Abstract] [Full Text] [Related]

  • 5. The influence of aging on interaural asymmetries in middle latency response amplitude.
    Weihing J, Musiek F.
    J Am Acad Audiol; 2014 Apr; 25(4):324-34. PubMed ID: 25126680
    [Abstract] [Full Text] [Related]

  • 6. Auditory brainstem, middle and late latency responses to short gaps in noise at different presentation rates.
    Alhussaini K, Bohorquez J, Delgado RE, Ozdamar O.
    Int J Audiol; 2018 Jun; 57(6):399-406. PubMed ID: 29378459
    [Abstract] [Full Text] [Related]

  • 7. Middle Latency Responses to Optimized Chirps in Adult Cochlear Implant Users.
    Alemi R, Lehmann A.
    J Am Acad Audiol; 2019 May; 30(5):396-405. PubMed ID: 31044692
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. N1-p2 recordings to gaps in broadband noise.
    Palmer SB, Musiek FE.
    J Am Acad Audiol; 2013 Jan; 24(1):37-45. PubMed ID: 23231815
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Optimizing the acquisition time of the middle latency response using maximum length sequences and chirps.
    Bell SL, Allen R, Lutman ME.
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2065-73. PubMed ID: 12430818
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Comparison of the intrasubject repeatability of auditory brain stem and middle latency responses elicited in young children.
    Kavanagh KT, Domico WD, Crews PL, McCormick VA.
    Ann Otol Rhinol Laryngol; 1988 Nov; 97(3 Pt 1):264-71. PubMed ID: 3377393
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Linear and nonlinear temporal interaction components of mid-latency auditory evoked potentials obtained with maximum length sequence stimulation.
    Lavoie BA, Barks A, Thornton AR.
    Exp Brain Res; 2010 Apr; 202(1):231-7. PubMed ID: 19967341
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Hearing Loss and Age-Induced Changes in the Central Auditory System Measured by the P3 Response to Small Changes in Frequency.
    Vander Werff KR, Nesbitt KL.
    J Am Acad Audiol; 2017 May; 28(5):373-384. PubMed ID: 28534728
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.