These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1889 related items for PubMed ID: 19765554

  • 1. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP, Slotnick SD.
    Brain Res; 2009 Dec 11; 1302():157-66. PubMed ID: 19765554
    [Abstract] [Full Text] [Related]

  • 2. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL, Sun FT, Dale CL, Miller WL, Simpson GV.
    Neuroreport; 2008 Jan 22; 19(2):155-9. PubMed ID: 18185100
    [Abstract] [Full Text] [Related]

  • 3. Categorical and coordinate spatial relations in working memory: an fMRI study.
    van der Ham IJ, Raemaekers M, van Wezel RJ, Oleksiak A, Postma A.
    Brain Res; 2009 Nov 10; 1297():70-9. PubMed ID: 19651111
    [Abstract] [Full Text] [Related]

  • 4. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB, Luks TL, Simpson GV, Glaholt M, McIntosh AR.
    Neuroimage; 2006 Feb 15; 29(4):1192-202. PubMed ID: 16236528
    [Abstract] [Full Text] [Related]

  • 5. Dominance of the left oblique view in activating the cortical network for face recognition.
    Kowatari Y, Yamamoto M, Takahashi T, Kansaku K, Kitazawa S, Ueno S, Yamane S.
    Neurosci Res; 2004 Dec 15; 50(4):475-80. PubMed ID: 15567485
    [Abstract] [Full Text] [Related]

  • 6. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R, Kaufmann C, Tucha O, Auer DP, Lange KW.
    Brain Res; 2006 May 23; 1090(1):146-55. PubMed ID: 16643867
    [Abstract] [Full Text] [Related]

  • 7. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L, Young RA, Bowyer SM, Moran JE, Genik RJ, Green CC, Chiang YR, Yu YJ, Liao CC, Seaman S.
    Brain Res; 2009 Jan 28; 1251():162-75. PubMed ID: 18952070
    [Abstract] [Full Text] [Related]

  • 8. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM, Carr TH, Mayer AR, Rao SM.
    J Cogn Neurosci; 2000 Jan 28; 12 Suppl 2():106-17. PubMed ID: 11506651
    [Abstract] [Full Text] [Related]

  • 9. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E, Marzi CA, Macaluso E.
    Neuropsychologia; 2010 Mar 28; 48(4):1160-4. PubMed ID: 19932706
    [Abstract] [Full Text] [Related]

  • 10. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD, Woldorff MG, Mangun GR.
    Neuroimage; 2005 Apr 15; 25(3):668-83. PubMed ID: 15808968
    [Abstract] [Full Text] [Related]

  • 11. Fast and slow parietal pathways mediate spatial attention.
    Chambers CD, Payne JM, Stokes MG, Mattingley JB.
    Nat Neurosci; 2004 Mar 15; 7(3):217-8. PubMed ID: 14983182
    [Abstract] [Full Text] [Related]

  • 12. Navigation ability dependent neural activation in the human brain: an fMRI study.
    Ohnishi T, Matsuda H, Hirakata M, Ugawa Y.
    Neurosci Res; 2006 Aug 15; 55(4):361-9. PubMed ID: 16735070
    [Abstract] [Full Text] [Related]

  • 13. The neural basis of vertical and horizontal line bisection judgments: an fMRI study of normal volunteers.
    Fink GR, Marshall JC, Weiss PH, Zilles K.
    Neuroimage; 2001 Jul 15; 14(1 Pt 2):S59-67. PubMed ID: 11373134
    [Abstract] [Full Text] [Related]

  • 14. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I, Macaluso E.
    Magn Reson Imaging; 2004 Dec 15; 22(10):1477-86. PubMed ID: 15707797
    [Abstract] [Full Text] [Related]

  • 15. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E, Bonino D, Gentili C, Sani L, Pietrini P, Vecchi T.
    Neuroscience; 2006 Apr 28; 139(1):339-49. PubMed ID: 16324793
    [Abstract] [Full Text] [Related]

  • 16. Motion direction tuning in human visual cortex.
    Mercier M, Schwartz S, Michel CM, Blanke O.
    Eur J Neurosci; 2009 Jan 28; 29(2):424-34. PubMed ID: 19200244
    [Abstract] [Full Text] [Related]

  • 17. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
    Saygin AP, Sereno MI.
    Cereb Cortex; 2008 Sep 28; 18(9):2158-68. PubMed ID: 18234687
    [Abstract] [Full Text] [Related]

  • 18. Mental representations of action: the neural correlates of the verbal and motor components.
    Péran P, Démonet JF, Cherubini A, Carbebat D, Caltagirone C, Sabatini U.
    Brain Res; 2010 Apr 30; 1328():89-103. PubMed ID: 20226773
    [Abstract] [Full Text] [Related]

  • 19. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM, de Jong BM, Bohning DE, Walker JA, George MS, Leenders KL.
    Brain Res; 2009 Aug 18; 1285():58-68. PubMed ID: 19523932
    [Abstract] [Full Text] [Related]

  • 20. Neural correlates of coherent audiovisual motion perception.
    Baumann O, Greenlee MW.
    Cereb Cortex; 2007 Jun 18; 17(6):1433-43. PubMed ID: 16928890
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 95.