These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Simulation of creep in non-homogenous samples of human cortical bone. Ertas AH, Winwood K, Zioupos P, Cotton JR. Comput Methods Biomech Biomed Engin; 2012 Sep 11; 15(10):1121-8. PubMed ID: 21574078 [Abstract] [Full Text] [Related]
7. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing. Lunde KB, Foss OA, Skallerud B. J Biomech; 2008 Dec 05; 41(16):3469-74. PubMed ID: 18995858 [Abstract] [Full Text] [Related]
8. An experimental study on the biomechanical properties of the cancellous bones of distal femur. Du C, Ma H, Ruo M, Zhang Z, Yu X, Zeng Y. Biomed Mater Eng; 2006 Dec 05; 16(3):215-22. PubMed ID: 16518020 [Abstract] [Full Text] [Related]
9. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Yeni YN, Dong XN, Fyhrie DP, Les CM. Biomed Mater Eng; 2004 Dec 05; 14(3):303-10. PubMed ID: 15299242 [Abstract] [Full Text] [Related]
10. Constitutive models for constrained compression of unimpacted and impacted human morselized bone grafts. Lunde KB, Foss OA, Fosse L, Skallerud B. J Biomech Eng; 2008 Dec 05; 130(6):061014. PubMed ID: 19045543 [Abstract] [Full Text] [Related]
11. Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression. Allen KD, Athanasiou KA. J Biomech; 2006 Dec 05; 39(2):312-22. PubMed ID: 16321633 [Abstract] [Full Text] [Related]
12. The effect of strain rate on the mechanical properties of human cortical bone. Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. J Biomech Eng; 2008 Feb 05; 130(1):011011. PubMed ID: 18298187 [Abstract] [Full Text] [Related]
13. 3D analysis from micro-MRI during in situ compression on cancellous bone. Benoit A, Guérard S, Gillet B, Guillot G, Hild F, Mitton D, Périé JN, Roux S. J Biomech; 2009 Oct 16; 42(14):2381-6. PubMed ID: 19643419 [Abstract] [Full Text] [Related]
15. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. Bourne BC, van der Meulen MC. J Biomech; 2004 May 16; 37(5):613-21. PubMed ID: 15046990 [Abstract] [Full Text] [Related]
17. Alterations in damage processes in dense cancellous bone following gamma-radiation sterilization. Dux SJ, Ramsey D, Chu EH, Rimnac CM, Hernandez CJ. J Biomech; 2010 May 28; 43(8):1509-13. PubMed ID: 20172526 [Abstract] [Full Text] [Related]
19. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression. Li LP, Herzog W, Korhonen RK, Jurvelin JS. Med Eng Phys; 2005 Jan 28; 27(1):51-7. PubMed ID: 15604004 [Abstract] [Full Text] [Related]
20. The fracture toughness of cancellous bone. Cook RB, Zioupos P. J Biomech; 2009 Sep 18; 42(13):2054-60. PubMed ID: 19643417 [Abstract] [Full Text] [Related] Page: [Next] [New Search]