These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 19767896

  • 21. Sequences of the waxy loci of wheat: utility in analysis of waxy proteins and developing molecular markers.
    Yan L, Bhave M.
    Biochem Genet; 2000 Dec; 38(11-12):391-411. PubMed ID: 11301917
    [Abstract] [Full Text] [Related]

  • 22. Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms.
    Van K, Onoda S, Kim MY, Kim KD, Lee SH.
    Mol Genet Genomics; 2008 Mar; 279(3):255-66. PubMed ID: 18157676
    [Abstract] [Full Text] [Related]

  • 23. [Isolation and sequence analysis of a omega-gliadin homologous gene from wheat].
    Chen FG, Xia GM.
    Yi Chuan; 2005 Nov; 27(6):941-7. PubMed ID: 16378943
    [Abstract] [Full Text] [Related]

  • 24. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm.
    Harn C, Knight M, Ramakrishnan A, Guan H, Keeling PL, Wasserman BP.
    Plant Mol Biol; 1998 Jul; 37(4):639-49. PubMed ID: 9687068
    [Abstract] [Full Text] [Related]

  • 25. A 56-kDa protein is a novel granule-bound starch synthase existing in the pericarps, aleurone layers, and embryos of immature seed in diploid wheat (Triticum monococcum L.).
    Fujita N, Taira T.
    Planta; 1998 Dec; 207(1):125-32. PubMed ID: 9951718
    [Abstract] [Full Text] [Related]

  • 26. Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species.
    Guzmán C, Caballero L, Martín LM, Alvarez JB.
    Ann Bot; 2012 Nov; 110(6):1161-71. PubMed ID: 22984164
    [Abstract] [Full Text] [Related]

  • 27. Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat.
    Yan L, Bhave M.
    Genome; 2001 Aug; 44(4):582-8. PubMed ID: 11550891
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Structure, organization, and chromosomal location of the gene encoding a form of rice soluble starch synthase.
    Tanaka K, Ohnishi S, Kishimoto N, Kawasaki T, Baba T.
    Plant Physiol; 1995 Jun; 108(2):677-83. PubMed ID: 7610165
    [Abstract] [Full Text] [Related]

  • 30. An efficient computational method for screening functional SNPs in plants.
    Kharabian A.
    J Theor Biol; 2010 Jul 07; 265(1):55-62. PubMed ID: 20406646
    [Abstract] [Full Text] [Related]

  • 31. Variation in the primary structure of waxy proteins (granule-bound starch synthase) in diploid cereals.
    Taira T, Fujita N, Takaoka K, Uematsu M, Wadano A, Kozaki S, Okabe S.
    Biochem Genet; 1995 Aug 07; 33(7-8):269-81. PubMed ID: 8595054
    [Abstract] [Full Text] [Related]

  • 32. Orthologous DNA sequence variation among 5S ribosomal RNA gene spacer sequences on homoeologous chromosomes 1B, 1D, and 1R of wheat and rye.
    Van Campenhout S, Aert R, Volckaert G.
    Genome; 1998 Apr 07; 41(2):244-55. PubMed ID: 9644833
    [Abstract] [Full Text] [Related]

  • 33. The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility.
    Evans RC, Alice LA, Campbell CS, Kellogg EA, Dickinson TA.
    Mol Phylogenet Evol; 2000 Dec 07; 17(3):388-400. PubMed ID: 11133193
    [Abstract] [Full Text] [Related]

  • 34. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato.
    Dry I, Smith A, Edwards A, Bhattacharyya M, Dunn P, Martin C.
    Plant J; 1992 Mar 07; 2(2):193-202. PubMed ID: 1302049
    [Abstract] [Full Text] [Related]

  • 35. Molecular identification and chromosomal localization of genes encoding Triticum aestivum xylanase inhibitor I-like proteins in cereals.
    Raedschelders G, Debefve C, Goesaert H, Delcour JA, Volckaert G, Van Campenhout S.
    Theor Appl Genet; 2004 Jun 07; 109(1):112-21. PubMed ID: 15004675
    [Abstract] [Full Text] [Related]

  • 36. Molecular basis of the waxy endosperm starch phenotype in broomcorn millet (Panicum miliaceum L.).
    Hunt HV, Denyer K, Packman LC, Jones MK, Howe CJ.
    Mol Biol Evol; 2010 Jul 07; 27(7):1478-94. PubMed ID: 20139147
    [Abstract] [Full Text] [Related]

  • 37. Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker.
    Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, Fujita M.
    Theor Appl Genet; 2003 Jun 07; 107(1):84-8. PubMed ID: 12669198
    [Abstract] [Full Text] [Related]

  • 38. Identification and sequence analysis of grain softness protein in selected wheat, rye and triticale.
    Kharrazi MA, Bobojonov V.
    Genet Mol Res; 2012 Aug 16; 11(3):2578-84. PubMed ID: 22869084
    [Abstract] [Full Text] [Related]

  • 39. The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant.
    Shoeva OY, Khlestkina EK, Berges H, Salina EA.
    Gene; 2014 Apr 01; 538(2):334-41. PubMed ID: 24480448
    [Abstract] [Full Text] [Related]

  • 40. Revolver is a new class of transposon-like gene composing the triticeae genome.
    Tomita M, Shinohara K, Morimoto M.
    DNA Res; 2008 Feb 29; 15(1):49-62. PubMed ID: 18303044
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.