These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 19772291

  • 1. Electrically Controlling and Monitoring InP Nanowire Growth from Solution.
    Dorn A, Allen PM, Bawendi MG.
    ACS Nano; 2009 Oct 27; 3(10):3260-5. PubMed ID: 19772291
    [Abstract] [Full Text] [Related]

  • 2. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM.
    Nature; 2002 Feb 07; 415(6872):617-20. PubMed ID: 11832939
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Selective-area vapour-liquid-solid growth of InP nanowires.
    Dalacu D, Kam A, Guy Austing D, Wu X, Lapointe J, Aers GC, Poole PJ.
    Nanotechnology; 2009 Sep 30; 20(39):395602. PubMed ID: 19724116
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties.
    Liu Z, Sun K, Jian WB, Xu D, Lin YF, Fang J.
    Chemistry; 2009 Sep 30; 15(18):4546-52. PubMed ID: 19343761
    [Abstract] [Full Text] [Related]

  • 8. Light-controlled organic/inorganic P-N junction nanowires.
    Guo Y, Tang Q, Liu H, Zhang Y, Li Y, Hu W, Wang S, Zhu D.
    J Am Chem Soc; 2008 Jul 23; 130(29):9198-9. PubMed ID: 18588295
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Influence of surface states on electron transport through intrinsic Ge nanowires.
    Hanrath T, Korgel BA.
    J Phys Chem B; 2005 Mar 31; 109(12):5518-24. PubMed ID: 16851592
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Site-specific fabrication of nanoscale heterostructures: local chemical modification of GaN nanowires using electrochemical dip-pen nanolithography.
    Maynor BW, Li J, Lu C, Liu J.
    J Am Chem Soc; 2004 May 26; 126(20):6409-13. PubMed ID: 15149238
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. CuInSe2 nanowires from facile chemical transformation of In2Se3 and their integration in single-nanowire devices.
    Schoen DT, Peng H, Cui Y.
    ACS Nano; 2013 Apr 23; 7(4):3205-11. PubMed ID: 23413963
    [Abstract] [Full Text] [Related]

  • 17. Label-free immunodetection with CMOS-compatible semiconducting nanowires.
    Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA.
    Nature; 2007 Feb 01; 445(7127):519-22. PubMed ID: 17268465
    [Abstract] [Full Text] [Related]

  • 18. Temperature dependence of the field effect mobility of solution-grown germanium nanowires.
    Schricker AD, Joshi SV, Hanrath T, Banerjee SK, Korgel BA.
    J Phys Chem B; 2006 Apr 06; 110(13):6816-23. PubMed ID: 16570990
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.