These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


481 related items for PubMed ID: 19773161

  • 1. Effect of solvents and precipitant on the properties of chitosan nanoparticles in a water-in-oil microemulsion and its lipase immobilization performance.
    Wu Y, Wang Y, Luo G, Dai Y.
    Bioresour Technol; 2010 Feb; 101(3):841-4. PubMed ID: 19773161
    [Abstract] [Full Text] [Related]

  • 2. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution.
    Wu Y, Wang Y, Luo G, Dai Y.
    Bioresour Technol; 2009 Jul; 100(14):3459-64. PubMed ID: 19329306
    [Abstract] [Full Text] [Related]

  • 3. Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system.
    Yuan H, Huang LF, Du YZ, Ying XY, You J, Hu FQ, Zeng S.
    Colloids Surf B Biointerfaces; 2008 Feb 15; 61(2):132-7. PubMed ID: 17888636
    [Abstract] [Full Text] [Related]

  • 4. Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system.
    Wang Y, Wang X, Luo G, Dai Y.
    Bioresour Technol; 2008 Jun 15; 99(9):3881-4. PubMed ID: 17892932
    [Abstract] [Full Text] [Related]

  • 5. Immobilization of lipase on methyl-modified silica aerogels by physical adsorption.
    Gao S, Wang Y, Wang T, Luo G, Dai Y.
    Bioresour Technol; 2009 Jan 15; 100(2):996-9. PubMed ID: 18684619
    [Abstract] [Full Text] [Related]

  • 6. Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization.
    Ye P, Xu ZK, Wu J, Innocent C, Seta P.
    Biomaterials; 2006 Aug 15; 27(22):4169-76. PubMed ID: 16584770
    [Abstract] [Full Text] [Related]

  • 7. Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization.
    Ye P, Xu ZK, Che AF, Wu J, Seta P.
    Biomaterials; 2005 Nov 15; 26(32):6394-403. PubMed ID: 15919112
    [Abstract] [Full Text] [Related]

  • 8. Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques.
    Alloue WA, Destain J, El Medjoub T, Ghalfi H, Kabran P, Thonart P.
    Appl Biochem Biotechnol; 2008 Jul 15; 150(1):51-63. PubMed ID: 18327546
    [Abstract] [Full Text] [Related]

  • 9. Microemulsion-based organogels as matrices for lipase immobilization.
    Zoumpanioti M, Stamatis H, Xenakis A.
    Biotechnol Adv; 2010 Jul 15; 28(3):395-406. PubMed ID: 20156546
    [Abstract] [Full Text] [Related]

  • 10. Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface.
    Ye P, Jiang J, Xu ZK.
    Colloids Surf B Biointerfaces; 2007 Oct 15; 60(1):62-7. PubMed ID: 17616362
    [Abstract] [Full Text] [Related]

  • 11. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles.
    Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KV, Ulman A, Cowman M, Gross RA.
    J Am Chem Soc; 2003 Feb 19; 125(7):1684-5. PubMed ID: 12580578
    [Abstract] [Full Text] [Related]

  • 12. Characteristics of immobilized lipase on hydrophobic superparamagnetic microspheres to catalyze esterification.
    Guo Z, Sun Y.
    Biotechnol Prog; 2004 Feb 19; 20(2):500-6. PubMed ID: 15058995
    [Abstract] [Full Text] [Related]

  • 13. Preparation of chitosan particles suitable for enzyme immobilization.
    Biró E, Németh AS, Sisak C, Feczkó T, Gyenis J.
    J Biochem Biophys Methods; 2008 Apr 24; 70(6):1240-6. PubMed ID: 18155771
    [Abstract] [Full Text] [Related]

  • 14. Preparation of porous polyurethane particles and their use in enzyme immobilization.
    Wang X, Ruckenstein E.
    Biotechnol Prog; 1993 Apr 24; 9(6):661-5. PubMed ID: 7764355
    [Abstract] [Full Text] [Related]

  • 15. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes.
    Yoksan R, Jirawutthiwongchai J, Arpo K.
    Colloids Surf B Biointerfaces; 2010 Mar 01; 76(1):292-7. PubMed ID: 20004558
    [Abstract] [Full Text] [Related]

  • 16. Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by immobilized Candida rugosa lipase.
    Okada T, Morrissey MT.
    J Food Sci; 2008 Apr 01; 73(3):C146-50. PubMed ID: 18387091
    [Abstract] [Full Text] [Related]

  • 17. Reusability of surfactant-coated Candida rugosa lipase immobilized in gelatin microemulsion-based organogels for ethyl isovalerate synthesis.
    Dandavate V, Madamwar D.
    J Microbiol Biotechnol; 2008 Apr 01; 18(4):735-41. PubMed ID: 18467869
    [Abstract] [Full Text] [Related]

  • 18. Lipase immobilization into porous chitoxan beads: activities in aqueous and organic media and lipase localization.
    Magnin D, Dumitriu S, Magny P, Chornet E.
    Biotechnol Prog; 2001 Apr 01; 17(4):734-7. PubMed ID: 11485436
    [Abstract] [Full Text] [Related]

  • 19. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media.
    Mukherjee J, Solanki K, Gupta MN.
    Methods Mol Biol; 2013 Apr 01; 1051():117-27. PubMed ID: 23934801
    [Abstract] [Full Text] [Related]

  • 20. [Immobilization of lipase by chemical modification of chitosan].
    Hu WJ, Tan TW, Wang F, Gao Y.
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul 01; 23(4):667-71. PubMed ID: 17822041
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.