These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 19778636

  • 1. Assigning the source of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach.
    Mullner P, Spencer SE, Wilson DJ, Jones G, Noble AD, Midwinter AC, Collins-Emerson JM, Carter P, Hathaway S, French NP.
    Infect Genet Evol; 2009 Dec; 9(6):1311-9. PubMed ID: 19778636
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Statistical comparison of Campylobacter jejuni subtypes from human cases and environmental sources.
    Garrett N, Devane ML, Hudson JA, Nicol C, Ball A, Klena JD, Scholes P, Baker MG, Gilpin BJ, Savill MG.
    J Appl Microbiol; 2007 Dec; 103(6):2113-21. PubMed ID: 18045395
    [Abstract] [Full Text] [Related]

  • 4. Molecular and spatial epidemiology of human campylobacteriosis: source association and genotype-related risk factors.
    Mullner P, Shadbolt T, Collins-Emerson JM, Midwinter AC, Spencer SE, Marshall J, Carter PE, Campbell DM, Wilson DJ, Hathaway S, Pirie R, French NP.
    Epidemiol Infect; 2010 Oct; 138(10):1372-83. PubMed ID: 20141645
    [Abstract] [Full Text] [Related]

  • 5. The transmission of thermotolerant Campylobacter spp. to people living or working on dairy farms in New Zealand.
    Gilpin BJ, Scholes P, Robson B, Savill MG.
    Zoonoses Public Health; 2008 Sep; 55(7):352-60. PubMed ID: 18667028
    [Abstract] [Full Text] [Related]

  • 6. Molecular-based surveillance of campylobacteriosis in New Zealand--from source attribution to genomic epidemiology.
    Muellner P, Pleydell E, Pirie R, Baker MG, Campbell D, Carter PE, French NP.
    Euro Surveill; 2013 Jan 17; 18(3):. PubMed ID: 23351655
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Utilizing a combination of molecular and spatial tools to assess the effect of a public health intervention.
    Muellner P, Marshall JC, Spencer SE, Noble AD, Shadbolt T, Collins-Emerson JM, Midwinter AC, Carter PE, Pirie R, Wilson DJ, Campbell DM, Stevenson MA, French NP.
    Prev Vet Med; 2011 Dec 01; 102(3):242-53. PubMed ID: 21872952
    [Abstract] [Full Text] [Related]

  • 9. Phenon cluster analysis as a method to investigate epidemiological relatedness between sources of Campylobacter jejuni.
    Wieland B, Wittwer M, Regula G, Wassenaar TM, Burnens AP, Keller J, Stärk KD.
    J Appl Microbiol; 2006 Feb 01; 100(2):316-24. PubMed ID: 16430508
    [Abstract] [Full Text] [Related]

  • 10. Source attribution of food-borne zoonoses in New Zealand: a modified Hald model.
    Mullner P, Jones G, Noble A, Spencer SE, Hathaway S, French NP.
    Risk Anal; 2009 Jul 01; 29(7):970-84. PubMed ID: 19486473
    [Abstract] [Full Text] [Related]

  • 11. Comparison of genetic profiles of Campylobacter strains isolated from poultry, pig and Campylobacter human infections in Brittany, France.
    Denis M, Chidaine B, Laisney MJ, Kempf I, Rivoal K, Mégraud F, Fravalo P.
    Pathol Biol (Paris); 2009 Feb 01; 57(1):23-9. PubMed ID: 18534783
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Poultry meat as a source of human campylobacteriosis.
    van Gerwe TJ.
    Tijdschr Diergeneeskd; 2012 Mar 01; 137(3):172-6. PubMed ID: 22512063
    [Abstract] [Full Text] [Related]

  • 14. [Monitoring and risk assessment of campylobacter infections].
    Bartelt E.
    Dtsch Tierarztl Wochenschr; 2004 Aug 01; 111(8):326-31. PubMed ID: 15469062
    [Abstract] [Full Text] [Related]

  • 15. Regulation of chicken contamination is urgently needed to control New Zealand's serious campylobacteriosis epidemic.
    Baker M, Wilson N, Ikram R, Chambers S, Shoemack P, Cook G.
    N Z Med J; 2006 Oct 13; 119(1243):U2264. PubMed ID: 17063200
    [Abstract] [Full Text] [Related]

  • 16. Campylobacter in primary animal production and control strategies to reduce the burden of human campylobacteriosis.
    Wagenaar JA, Mevius DJ, Havelaar AH.
    Rev Sci Tech; 2006 Aug 13; 25(2):581-94. PubMed ID: 17094699
    [Abstract] [Full Text] [Related]

  • 17. Using outbreak data for source attribution of human salmonellosis and campylobacteriosis in Europe.
    Pires SM, Vigre H, Makela P, Hald T.
    Foodborne Pathog Dis; 2010 Nov 13; 7(11):1351-61. PubMed ID: 20586609
    [Abstract] [Full Text] [Related]

  • 18. Molecular epidemiology of Campylobacter jejuni in a geographically isolated country with a uniquely structured poultry industry.
    Müllner P, Collins-Emerson JM, Midwinter AC, Carter P, Spencer SE, van der Logt P, Hathaway S, French NP.
    Appl Environ Microbiol; 2010 Apr 13; 76(7):2145-54. PubMed ID: 20154115
    [Abstract] [Full Text] [Related]

  • 19. Introduction and spread of thermophilic campylobacters in broiler flocks.
    Evans SJ.
    Vet Rec; 2010 Apr 13; 131(25-26):574-6. PubMed ID: 1287951
    [Abstract] [Full Text] [Related]

  • 20. Source attributed case-control study of campylobacteriosis in New Zealand.
    Lake RJ, Campbell DM, Hathaway SC, Ashmore E, Cressey PJ, Horn BJ, Pirikahu S, Sherwood JM, Baker MG, Shoemack P, Benschop J, Marshall JC, Midwinter AC, Wilkinson DA, French NP.
    Int J Infect Dis; 2021 Feb 13; 103():268-277. PubMed ID: 33221520
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.