These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 19781051
21. Molecular characterization and expression analysis of the Rop GTPase family in Vitis vinifera. Abbal P, Pradal M, Sauvage FX, Chatelet P, Paillard S, Canaguier A, Adam-Blondon AF, Tesniere C. J Exp Bot; 2007; 58(10):2641-52. PubMed ID: 17578867 [Abstract] [Full Text] [Related]
22. AtKC1 and CIPK23 Synergistically Modulate AKT1-Mediated Low-Potassium Stress Responses in Arabidopsis. Wang XP, Chen LM, Liu WX, Shen LK, Wang FL, Zhou Y, Zhang Z, Wu WH, Wang Y. Plant Physiol; 2016 Apr; 170(4):2264-77. PubMed ID: 26829980 [Abstract] [Full Text] [Related]
23. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D, Pedreño MA, Bru-Martínez R. J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [Abstract] [Full Text] [Related]
24. VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H, Tapia J, Fujiwara T, González E. Plant Cell Physiol; 2012 Feb; 53(2):485-94. PubMed ID: 22247248 [Abstract] [Full Text] [Related]
26. A Ca(2)+ signaling pathway regulates a K(+) channel for low-K response in Arabidopsis. Li L, Kim BG, Cheong YH, Pandey GK, Luan S. Proc Natl Acad Sci U S A; 2006 Aug 15; 103(33):12625-30. PubMed ID: 16895985 [Abstract] [Full Text] [Related]
27. Genome-wide identification of soybean Shaker K+ channel gene family and functional characterization of GmAKT1 in transgenic Arabidopsis thaliana under salt and drought stress. Feng C, He C, Wang Y, Xu H, Xu K, Zhao Y, Yao B, Zhang Y, Zhao Y, Idrice Carther KF, Luo J, Sun D, Gao H, Wang F, Li X, Liu W, Dong Y, Wang N, Zhou Y, Li H. J Plant Physiol; 2021 Nov 15; 266():153529. PubMed ID: 34583134 [Abstract] [Full Text] [Related]
29. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin SD, Schubert A. Plant Physiol Biochem; 2016 Apr 15; 101():23-32. PubMed ID: 26851572 [Abstract] [Full Text] [Related]
30. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Chervin C, Tira-Umphon A, Terrier N, Zouine M, Severac D, Roustan JP. Physiol Plant; 2008 Nov 15; 134(3):534-46. PubMed ID: 18785902 [Abstract] [Full Text] [Related]
32. VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. Vignault C, Vachaud M, Cakir B, Glissant D, Dédaldéchamp F, Büttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S. J Exp Bot; 2005 May 15; 56(415):1409-18. PubMed ID: 15809282 [Abstract] [Full Text] [Related]
33. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Kim YY, Jung KW, Yoo KS, Jeung JU, Shin JS. Plant Cell Physiol; 2011 May 15; 52(5):874-84. PubMed ID: 21471120 [Abstract] [Full Text] [Related]
35. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini R, Kaldenhoff R, Uehlein N, Gribaudo I, Schubert A, Lovisolo C. Plant Physiol; 2012 Oct 15; 160(2):965-77. PubMed ID: 22923680 [Abstract] [Full Text] [Related]
36. Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Fernandez L, Chaïb J, Martinez-Zapater JM, Thomas MR, Torregrosa L. Plant J; 2013 Mar 15; 73(6):918-28. PubMed ID: 23181568 [Abstract] [Full Text] [Related]
37. Genome-Wide Identification and Expression Analysis of Calcineurin B-Like Protein and Calcineurin B-Like Protein-Interacting Protein Kinase Family Genes in Tea Plant. Liu H, Wang YX, Li H, Teng RM, Wang Y, Zhuang J. DNA Cell Biol; 2019 Aug 15; 38(8):824-839. PubMed ID: 31295023 [Abstract] [Full Text] [Related]
38. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S. Proc Natl Acad Sci U S A; 2007 Oct 02; 104(40):15959-64. PubMed ID: 17898163 [Abstract] [Full Text] [Related]
39. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP. Plant Physiol; 2001 Nov 02; 127(3):1012-9. PubMed ID: 11706182 [Abstract] [Full Text] [Related]
40. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. De Angeli A, Baetz U, Francisco R, Zhang J, Chaves MM, Regalado A. Planta; 2013 Aug 02; 238(2):283-91. PubMed ID: 23645258 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]