These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 19787686
1. Improved identification of hordeins by cysteine alkylation with 2-bromoethylamine, SDS-PAGE and subsequent in-gel tryptic digestion. Rehulková H, Marchetti-Deschmann M, Pittenauer E, Allmaier G, Rehulka P. J Mass Spectrom; 2009 Nov; 44(11):1613-21. PubMed ID: 19787686 [Abstract] [Full Text] [Related]
2. Suppression of C-hordein synthesis in barley by antisense constructs results in a more balanced amino acid composition. Lange M, Vincze E, Wieser H, Schjoerring JK, Holm PB. J Agric Food Chem; 2007 Jul 25; 55(15):6074-81. PubMed ID: 17580876 [Abstract] [Full Text] [Related]
3. Identification of linker regions and domain borders of the transcription activator protein NtrC from Escherichia coli by limited proteolysis, in-gel digestion, and mass spectrometry. Bantscheff M, Weiss V, Glocker MO. Biochemistry; 1999 Aug 24; 38(34):11012-20. PubMed ID: 10460156 [Abstract] [Full Text] [Related]
4. Measurement of wheat gluten and barley hordeins in contaminated oats from Europe, the United States and Canada by Sandwich R5 ELISA. Hernando A, Mujico JR, Mena MC, Lombardía M, Méndez E. Eur J Gastroenterol Hepatol; 2008 Jun 24; 20(6):545-54. PubMed ID: 18467914 [Abstract] [Full Text] [Related]
6. Production of barley endoprotease B2 in Pichia pastoris and its proteolytic activity against native and recombinant hordeins. Rosenkilde AL, Dionisio G, Holm PB, Brinch-Pedersen H. Phytochemistry; 2014 Jan 24; 97():11-9. PubMed ID: 24268446 [Abstract] [Full Text] [Related]
7. Separation and characterization of barley (Hordeum vulgare L.) hordeins by free zone capillary electrophoresis. Lookhart GL, Bean SR, Jones BL. Electrophoresis; 1999 Jun 24; 20(7):1605-12. PubMed ID: 10424486 [Abstract] [Full Text] [Related]
8. Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides. Manea M, Mezo G, Hudecz F, Przybylski M. J Pept Sci; 2007 Apr 24; 13(4):227-36. PubMed ID: 17394121 [Abstract] [Full Text] [Related]
9. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain. Sikdar MS, Bowra S, Schmidt D, Dionisio G, Holm PB, Vincze E. Transgenic Res; 2016 Feb 24; 25(1):19-31. PubMed ID: 26507269 [Abstract] [Full Text] [Related]
10. Visualization of proteins by modification of lysines, cysteines, and phosphorylated serines facilitates sample preparation for microsequencing. Hsi KL, O'Neill SA, Dupont DR, Yuan PM. Anal Biochem; 1998 Apr 10; 258(1):38-47. PubMed ID: 9527845 [Abstract] [Full Text] [Related]
13. Application of proteomics to hordein screening in the malting process. Flodrová D, Ralplachta J, Benkovská D, Bobálová J. Eur J Mass Spectrom (Chichester); 2012 Apr 10; 18(3):323-32. PubMed ID: 22837436 [Abstract] [Full Text] [Related]
14. A method to identify and simultaneously determine the relative quantities of proteins isolated by gel electrophoresis. Sechi S. Rapid Commun Mass Spectrom; 2002 Apr 10; 16(15):1416-24. PubMed ID: 12125017 [Abstract] [Full Text] [Related]
15. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus. Stosová T, Sebela M, Rehulka P, Sedo O, Havlis J, Zdráhal Z. Anal Biochem; 2008 May 01; 376(1):94-102. PubMed ID: 18261455 [Abstract] [Full Text] [Related]
17. Detection and identification of arginine modifications on methylglyoxal-modified ribonuclease by mass spectrometric analysis. Brock JW, Cotham WE, Thorpe SR, Baynes JW, Ames JM. J Mass Spectrom; 2007 Jan 01; 42(1):89-100. PubMed ID: 17143934 [Abstract] [Full Text] [Related]
18. The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis. Froelich JM, Reid GE. Proteomics; 2008 Apr 01; 8(7):1334-45. PubMed ID: 18306178 [Abstract] [Full Text] [Related]