These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


420 related items for PubMed ID: 1978796

  • 1. Organization of tyrosine hydroxylase- and serotonin-immunoreactive brainstem neurons with axon collaterals to the periaqueductal gray and the spinal cord in the rat.
    Kwiat GC, Basbaum AI.
    Brain Res; 1990 Sep 24; 528(1):83-94. PubMed ID: 1978796
    [Abstract] [Full Text] [Related]

  • 2. Differential origin of brainstem serotoninergic projections to the midbrain periaqueductal gray and superior colliculus of the rat.
    Beitz AJ, Clements JR, Mullett MA, Ecklund LJ.
    J Comp Neurol; 1986 Aug 22; 250(4):498-509. PubMed ID: 3760251
    [Abstract] [Full Text] [Related]

  • 3. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus.
    Reichling DB, Basbaum AI.
    J Comp Neurol; 1990 Dec 08; 302(2):370-7. PubMed ID: 2289975
    [Abstract] [Full Text] [Related]

  • 4. The origin of brainstem noradrenergic and serotonergic projections to the spinal cord dorsal horn in the rat.
    Kwiat GC, Basbaum AI.
    Somatosens Mot Res; 1992 Dec 08; 9(2):157-73. PubMed ID: 1354402
    [Abstract] [Full Text] [Related]

  • 5. The projections of the midbrain periaqueductal grey to the pons and medulla oblongata in rats.
    Odeh F, Antal M.
    Eur J Neurosci; 2001 Oct 08; 14(8):1275-86. PubMed ID: 11703456
    [Abstract] [Full Text] [Related]

  • 6. Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception.
    Bajic D, Proudfit HK.
    J Comp Neurol; 1999 Mar 15; 405(3):359-79. PubMed ID: 10076931
    [Abstract] [Full Text] [Related]

  • 7. Collateralization of periaqueductal gray neurons to forebrain or diencephalon and to the medullary nucleus raphe magnus in the rat.
    Reichling DB, Basbaum AI.
    Neuroscience; 1991 Mar 15; 42(1):183-200. PubMed ID: 1713655
    [Abstract] [Full Text] [Related]

  • 8. An ultrastructural study of the projections from the midbrain periaqueductal gray to spinally projecting, serotonin-immunoreactive neurons of the medullary nucleus raphe magnus in the rat.
    Lakos S, Basbaum AI.
    Brain Res; 1988 Mar 08; 443(1-2):383-8. PubMed ID: 3282614
    [Abstract] [Full Text] [Related]

  • 9. Estrogen receptor-alpha and -beta immunoreactive neurons in the brainstem and spinal cord of male and female mice: relationships to monoaminergic, cholinergic, and spinal projection systems.
    Vanderhorst VG, Gustafsson JA, Ulfhake B.
    J Comp Neurol; 2005 Jul 25; 488(2):152-79. PubMed ID: 15924341
    [Abstract] [Full Text] [Related]

  • 10. Collateral projections of single neurons in the periaqueductal gray and dorsal raphe nucleus to both the trigeminal sensory complex and spinal cord in the rat.
    Li YQ, Takada M, Mizuno N.
    Neurosci Lett; 1993 Apr 30; 153(2):153-6. PubMed ID: 8327190
    [Abstract] [Full Text] [Related]

  • 11. delta-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin.
    Arvidsson U, Dado RJ, Riedl M, Lee JH, Law PY, Loh HH, Elde R, Wessendorf MW.
    J Neurosci; 1995 Feb 30; 15(2):1215-35. PubMed ID: 7532700
    [Abstract] [Full Text] [Related]

  • 12. Relationship of tyrosine hydroxylase and serotonin immunoreactivity to sensorimotor circuitry in larval zebrafish.
    McLean DL, Fetcho JR.
    J Comp Neurol; 2004 Nov 29; 480(1):57-71. PubMed ID: 15514919
    [Abstract] [Full Text] [Related]

  • 13. Catecholaminergic innervation of the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR, Ho RH, Martin GF.
    Brain Behav Evol; 1988 Nov 29; 32(5):281-92. PubMed ID: 2906810
    [Abstract] [Full Text] [Related]

  • 14. Topographic principles in the spinal projections of serotonergic and non-serotonergic brainstem neurons in the rat.
    Skagerberg G, Björklund A.
    Neuroscience; 1985 Jun 29; 15(2):445-80. PubMed ID: 4022334
    [Abstract] [Full Text] [Related]

  • 15. Calbindin-immunoreactive neurons in the reticular formation of the rat brainstem: catecholamine content and spinal projections.
    Goodchild AK, Llewellyn-Smith IJ, Sun QJ, Chalmers J, Cunningham AM, Pilowsky PM.
    J Comp Neurol; 2000 Aug 28; 424(3):547-62. PubMed ID: 10906719
    [Abstract] [Full Text] [Related]

  • 16. Catecholaminergic innervation of the sympathetic preganglionic cell column of the filefish Stephanolepis cirrhifer.
    Funakoshi K, Nakano M, Atobe Y, Kadota T, Goris RC, Kishida R.
    J Comp Neurol; 2002 Jan 14; 442(3):204-16. PubMed ID: 11774336
    [Abstract] [Full Text] [Related]

  • 17. Collateral projections of single neurons in the nucleus raphe magnus to both the sensory trigeminal nuclei and spinal cord in the rat.
    Li YQ, Takada M, Shinonaga Y, Mizuno N.
    Brain Res; 1993 Feb 05; 602(2):331-5. PubMed ID: 8448674
    [Abstract] [Full Text] [Related]

  • 18. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA, Basbaum AI.
    J Comp Neurol; 1981 Sep 10; 201(2):285-97. PubMed ID: 7287930
    [Abstract] [Full Text] [Related]

  • 19. Retrograde labeling of neurons in the brain stem following injections of [3H]choline into the rat spinal cord.
    Jones BE, Paré M, Beaudet A.
    Neuroscience; 1986 Aug 10; 18(4):901-16. PubMed ID: 3762931
    [Abstract] [Full Text] [Related]

  • 20. Periaqueductal gray stimulation-induced inhibition of nociceptive dorsal horn neurons in rats is associated with the release of norepinephrine, serotonin, and amino acids.
    Cui M, Feng Y, McAdoo DJ, Willis WD.
    J Pharmacol Exp Ther; 1999 May 10; 289(2):868-76. PubMed ID: 10215665
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.