These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
310 related items for PubMed ID: 19789239
1. RGD-labeled USPIO inhibits adhesion and endocytotic activity of alpha v beta3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment. Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC, Mueller MM, Zentgraf H, Eisenhut M, Addadi Y, Neeman M, Semmler W. Radiology; 2009 Nov; 253(2):462-9. PubMed ID: 19789239 [Abstract] [Full Text] [Related]
2. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, Zentgraf H, Bock M, Eisenhut M, Semmler W, Kiessling F. Cancer Res; 2007 Feb 15; 67(4):1555-62. PubMed ID: 17308094 [Abstract] [Full Text] [Related]
3. Specific targeting of angiogenesis in lung cancer with RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a 4.7T magnetic resonance scanner. Liu C, Liu DB, Long GX, Wang JF, Mei Q, Hu GY, Qiu H, Hu GQ. Chin Med J (Engl); 2013 Jun 15; 126(12):2242-7. PubMed ID: 23786932 [Abstract] [Full Text] [Related]
4. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. Cui Y, Zhang C, Luo R, Liu H, Zhang Z, Xu T, Zhang Y, Wang D. Int J Nanomedicine; 2016 Jun 15; 11():5671-5682. PubMed ID: 27895477 [Abstract] [Full Text] [Related]
5. Noninvasively characterizing the different alphavbeta3 expression patterns in lung cancers with RGD-USPIO using a clinical 3.0T MR scanner. Jiang T, Zhang C, Zheng X, Xu X, Xie X, Liu H, Liu S. Int J Nanomedicine; 2009 Jun 15; 4():241-9. PubMed ID: 20011241 [Abstract] [Full Text] [Related]
6. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, Chen X. J Nucl Med; 2007 Jul 15; 48(7):1162-71. PubMed ID: 17574975 [Abstract] [Full Text] [Related]
7. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ₃ for staging liver fibrosis in rat model. Zhang C, Liu H, Cui Y, Li X, Zhang Z, Zhang Y, Wang D. Int J Nanomedicine; 2016 Jul 15; 11():1097-108. PubMed ID: 27051285 [Abstract] [Full Text] [Related]
8. [Construction of RGD10-NGR9 dual-targeting superparamagnetic iron oxide and its magnetic resonance imaging features in nude mice]. Wu QY, Shi JY, Zhang J, Zhang LQ, Zhao YM, Tang L, Chen Y, He XD, Liu H, Su B. Zhonghua Zhong Liu Za Zhi; 2013 Nov 15; 35(11):808-13. PubMed ID: 24447476 [Abstract] [Full Text] [Related]
9. Integrin αvβ6-targeted MR molecular imaging of breast cancer in a xenograft mouse model. Li D, Dong C, Ma X, Zhao X. Cancer Imaging; 2021 Jun 29; 21(1):44. PubMed ID: 34187570 [Abstract] [Full Text] [Related]
10. αvß3-Integrin-Targeted Magnetic Resonance Imaging for the Assessment of Early Antiangiogenic Therapy Effects in Orthotopic Breast Cancer Xenografts. Kazmierczak PM, Schneider M, Habereder T, Hirner-Eppeneder H, Eschbach RS, Moser M, Reiser MF, Lauber K, Nikolaou K, Cyran CC. Invest Radiol; 2016 Nov 29; 51(11):746-755. PubMed ID: 27082316 [Abstract] [Full Text] [Related]
11. RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, Kang JH, Lim SM, Park S, Song R. J Nucl Med; 2013 Jan 29; 54(1):96-103. PubMed ID: 23232276 [Abstract] [Full Text] [Related]
12. Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner. Li X, Du X, Huo T, Liu X, Zhang S, Yuan F. Acta Radiol; 2009 Jul 29; 50(6):583-94. PubMed ID: 19449236 [Abstract] [Full Text] [Related]
13. Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, Bading JR, Laug WE, Conti PS. J Nucl Med; 2004 Oct 29; 45(10):1776-83. PubMed ID: 15471848 [Abstract] [Full Text] [Related]
14. 18F-labeled magnetic nanoparticles for monitoring anti-angiogenic therapeutic effects in breast cancer xenografts. Wang Y, Liu H, Yao D, Li J, Yang S, Zhang C, Chen W, Wang D. J Nanobiotechnology; 2019 Oct 11; 17(1):105. PubMed ID: 31604441 [Abstract] [Full Text] [Related]
15. Targeted RGD nanoparticles for highly sensitive in vivo integrin receptor imaging. Lin RY, Dayananda K, Chen TJ, Chen CY, Liu GC, Lin KL, Wang YM. Contrast Media Mol Imaging; 2012 Oct 11; 7(1):7-18. PubMed ID: 22344875 [Abstract] [Full Text] [Related]
16. Antiangiogenic tumor treatment: early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Persigehl T, Bieker R, Matuszewski L, Wall A, Kessler T, Kooijman H, Meier N, Ebert W, Berdel WE, Heindel W, Mesters RM, Bremer C. Radiology; 2007 Aug 11; 244(2):449-56. PubMed ID: 17562810 [Abstract] [Full Text] [Related]
17. Magnetic resonance imaging of tumor angiogenesis using dual-targeting RGD10-NGR9 ultrasmall superparamagnetic iron oxide nanoparticles. Wu T, Ding X, Su B, Soodeen-Lalloo AK, Zhang L, Shi JY. Clin Transl Oncol; 2018 May 11; 20(5):599-606. PubMed ID: 28956266 [Abstract] [Full Text] [Related]
18. 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Chen X, Park R, Shahinian AH, Tohme M, Khankaldyyan V, Bozorgzadeh MH, Bading JR, Moats R, Laug WE, Conti PS. Nucl Med Biol; 2004 Feb 11; 31(2):179-89. PubMed ID: 15013483 [Abstract] [Full Text] [Related]