These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


244 related items for PubMed ID: 19790265

  • 1. Trimethylamine N-oxide influence on the backbone of proteins: an oligoglycine model.
    Hu CY, Lynch GC, Kokubo H, Pettitt BM.
    Proteins; 2010 Feb 15; 78(3):695-704. PubMed ID: 19790265
    [Abstract] [Full Text] [Related]

  • 2. Backbone additivity in the transfer model of protein solvation.
    Hu CY, Kokubo H, Lynch GC, Bolen DW, Pettitt BM.
    Protein Sci; 2010 May 15; 19(5):1011-22. PubMed ID: 20306490
    [Abstract] [Full Text] [Related]

  • 3. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility.
    Athawale MV, Dordick JS, Garde S.
    Biophys J; 2005 Aug 15; 89(2):858-66. PubMed ID: 15894642
    [Abstract] [Full Text] [Related]

  • 4. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P, Hajari T, Shea JE, van der Vegt NF.
    J Phys Chem Lett; 2015 Feb 19; 6(4):581-5. PubMed ID: 26262470
    [Abstract] [Full Text] [Related]

  • 5. Structure and energetics of the hydrogen-bonded backbone in protein folding.
    Bolen DW, Rose GD.
    Annu Rev Biochem; 2008 Feb 19; 77():339-62. PubMed ID: 18518824
    [Abstract] [Full Text] [Related]

  • 6. Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine.
    Liao YT, Manson AC, DeLyser MR, Noid WG, Cremer PS.
    Proc Natl Acad Sci U S A; 2017 Mar 07; 114(10):2479-2484. PubMed ID: 28228526
    [Abstract] [Full Text] [Related]

  • 7. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R, Paul S.
    J Chem Phys; 2013 Jul 21; 139(3):034504. PubMed ID: 23883044
    [Abstract] [Full Text] [Related]

  • 8. Peptide conformational preferences in osmolyte solutions: transfer free energies of decaalanine.
    Kokubo H, Hu CY, Pettitt BM.
    J Am Chem Soc; 2011 Feb 16; 133(6):1849-58. PubMed ID: 21250690
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory.
    Mondal J, Halverson D, Li IT, Stirnemann G, Walker GC, Berne BJ.
    Proc Natl Acad Sci U S A; 2015 Jul 28; 112(30):9270-5. PubMed ID: 26170324
    [Abstract] [Full Text] [Related]

  • 16. Destabilization of the hydrogen-bond structure of water by the osmolyte trimethylamine N-oxide.
    Rezus YL, Bakker HJ.
    J Phys Chem B; 2009 Apr 02; 113(13):4038-44. PubMed ID: 19425246
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Hydrogen bonding progressively strengthens upon transfer of the protein urea-denatured state to water and protecting osmolytes.
    Holthauzen LM, Rösgen J, Bolen DW.
    Biochemistry; 2010 Feb 16; 49(6):1310-8. PubMed ID: 20073511
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.