These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Merlini M, Crichton WA, Hanfland M, Gemmi M, Müller H, Kupenko I, Dubrovinsky L. Proc Natl Acad Sci U S A; 2012 Aug 21; 109(34):13509-14. PubMed ID: 22869705 [Abstract] [Full Text] [Related]
24. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements. Duan Y, Feng M, Zhong X, Shang R, Huang L. PLoS One; 2016 Aug 21; 11(12):e0167035. PubMed ID: 27907043 [Abstract] [Full Text] [Related]
27. Heat-Induced Dolomitization of Amorphous Calcium Magnesium Carbonate in a CO2-Filled Closed System. Sugawara S, Fujiya W, Kagi H, Yamaguchi A, Hashizume K. ACS Omega; 2022 Dec 13; 7(49):44670-44676. PubMed ID: 36530237 [Abstract] [Full Text] [Related]
28. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs. Wang S, Tokunaga TK. Environ Sci Technol; 2015 Jun 16; 49(12):7208-17. PubMed ID: 25945400 [Abstract] [Full Text] [Related]
29. Removal of low-concentration phosphorus using a fluidized raw dolomite bed. Ayoub GM, Kalinian H. Water Environ Res; 2006 Apr 16; 78(4):353-61. PubMed ID: 16749303 [Abstract] [Full Text] [Related]
30. A Raman spectroscopic comparison of calcite and dolomite. Sun J, Wu Z, Cheng H, Zhang Z, Frost RL. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan 03; 117():158-62. PubMed ID: 23988531 [Abstract] [Full Text] [Related]
31. Effect of pelletization and addition of steam on the cyclic performance of carbon-templated, CaO-based CO2 sorbents. Broda M, Manovic V, Anthony EJ, Müller CR. Environ Sci Technol; 2014 May 06; 48(9):5322-8. PubMed ID: 24678727 [Abstract] [Full Text] [Related]
32. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Manovic V, Anthony EJ. Environ Sci Technol; 2007 Feb 15; 41(4):1420-5. PubMed ID: 17593751 [Abstract] [Full Text] [Related]
36. Influence of ameliorating soil acidity with dolomite on the priming of soil C content and CO2 emission. Shaaban M, Wu L, Peng QA, van Zwieten L, Chhajro MA, Wu Y, Lin S, Ahmed MM, Khalid MS, Abid M, Hu R. Environ Sci Pollut Res Int; 2017 Apr 15; 24(10):9241-9250. PubMed ID: 28224337 [Abstract] [Full Text] [Related]
37. Relevant influence of limestone crystallinity on CO₂ capture in the Ca-looping technology at realistic calcination conditions. Valverde JM, Sanchez-Jimenez PE, Perez-Maqueda LA. Environ Sci Technol; 2014 Aug 19; 48(16):9882-9. PubMed ID: 25029532 [Abstract] [Full Text] [Related]
38. Investigations on Potential Applications of CaMg(CO3)2 Nanoparticles. Han I, Rhee C, Kim D. Molecules; 2022 Dec 30; 28(1):. PubMed ID: 36615509 [Abstract] [Full Text] [Related]
39. Development and characterization of a new dolomite-based catalyst: application to the photocatalytic degradation of pentachlorophenol. Belarbi I, Çoruh A, Hamacha R, Marouf-Khelifa K, Khelifa A. Water Sci Technol; 2019 Feb 30; 79(4):741-752. PubMed ID: 30975940 [Abstract] [Full Text] [Related]
40. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. Tian S, Jiang J, Yan F, Li K, Chen X. Environ Sci Technol; 2015 Jun 16; 49(12):7464-72. PubMed ID: 25961319 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]