These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


552 related items for PubMed ID: 19800266

  • 1. Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells.
    Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H, Kitabayashi I, Tsukada T, Nomura T, Miyachi Y, Taniuchi I, Sakaguchi S.
    Immunity; 2009 Oct 16; 31(4):609-20. PubMed ID: 19800266
    [Abstract] [Full Text] [Related]

  • 2. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1.
    Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T, Sakaguchi S.
    Nature; 2007 Apr 05; 446(7136):685-9. PubMed ID: 17377532
    [Abstract] [Full Text] [Related]

  • 3. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells.
    Klunker S, Chong MM, Mantel PY, Palomares O, Bassin C, Ziegler M, Rückert B, Meiler F, Akdis M, Littman DR, Akdis CA.
    J Exp Med; 2009 Nov 23; 206(12):2701-15. PubMed ID: 19917773
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3.
    Williams LM, Rudensky AY.
    Nat Immunol; 2007 Mar 23; 8(3):277-84. PubMed ID: 17220892
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature.
    Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D, Benoist C.
    Immunity; 2007 Nov 23; 27(5):786-800. PubMed ID: 18024188
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Increased CD4+CD25+Foxp3+ regulatory T cells in tolerance induced by portal venous injection.
    He F, Chen Z, Xu S, Cai M, Wu M, Li H, Chen X.
    Surgery; 2009 Jun 23; 145(6):663-74. PubMed ID: 19486771
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. In vivo expansion of CD4+Foxp3+ regulatory T cells mediated by GITR molecules.
    Nishioka T, Nishida E, Iida R, Morita A, Shimizu J.
    Immunol Lett; 2008 Dec 22; 121(2):97-104. PubMed ID: 18930767
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Neuropilin-1 is not a marker of human Foxp3+ Treg.
    Milpied P, Renand A, Bruneau J, Mendes-da-Cruz DA, Jacquelin S, Asnafi V, Rubio MT, MacIntyre E, Lepelletier Y, Hermine O.
    Eur J Immunol; 2009 Jun 22; 39(6):1466-71. PubMed ID: 19499532
    [Abstract] [Full Text] [Related]

  • 20. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells.
    Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY.
    Nature; 2007 Feb 22; 445(7130):936-40. PubMed ID: 17237761
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.