These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


331 related items for PubMed ID: 19801484

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis.
    Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R.
    J Biotechnol; 2015 Feb 20; 196-197():33-41. PubMed ID: 25612872
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Gene fusions for the directed modification of the carotenoid biosynthesis pathway in Mucor circinelloides.
    Iturriaga EA, Papp T, Alvarez MI, Eslava AP.
    Methods Mol Biol; 2012 Feb 20; 898():109-22. PubMed ID: 22711120
    [Abstract] [Full Text] [Related]

  • 28. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous.
    Gutiérrez MS, Rojas MC, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J.
    PLoS One; 2015 Feb 20; 10(10):e0140424. PubMed ID: 26466337
    [Abstract] [Full Text] [Related]

  • 29. Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli.
    Li D, Li Y, Xu JY, Li QY, Tang JL, Jia SR, Bi CH, Dai ZB, Zhu XN, Zhang XL.
    Chin J Nat Med; 2020 Sep 20; 18(9):666-676. PubMed ID: 32928510
    [Abstract] [Full Text] [Related]

  • 30. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli.
    Makino T, Harada H, Ikenaga H, Matsuda S, Takaichi S, Shindo K, Sandmann G, Ogata T, Misawa N.
    Plant Cell Physiol; 2008 Dec 20; 49(12):1867-78. PubMed ID: 18987067
    [Abstract] [Full Text] [Related]

  • 31. Stepwise pathway engineering to the biosynthesis of zeaxanthin, astaxanthin and capsanthin in rice endosperm.
    Ha SH, Kim JK, Jeong YS, You MK, Lim SH, Kim JK.
    Metab Eng; 2019 Mar 20; 52():178-189. PubMed ID: 30503392
    [Abstract] [Full Text] [Related]

  • 32. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production.
    Alcaíno J, Bravo N, Córdova P, Marcoleta AE, Contreras G, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V.
    PLoS One; 2016 Mar 20; 11(9):e0162838. PubMed ID: 27622474
    [Abstract] [Full Text] [Related]

  • 33. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin.
    Rodríguez-Sáiz M, de la Fuente JL, Barredo JL.
    Appl Microbiol Biotechnol; 2010 Oct 20; 88(3):645-58. PubMed ID: 20711573
    [Abstract] [Full Text] [Related]

  • 34. Metabolic engineering of Mucor circinelloides for zeaxanthin production.
    Rodríguez-Sáiz M, de la Fuente JL, Barredo JL.
    Methods Mol Biol; 2012 Oct 20; 898():133-51. PubMed ID: 22711122
    [Abstract] [Full Text] [Related]

  • 35. Engineering of geranylgeranyl pyrophosphate synthase levels and physiological conditions for enhanced carotenoid and astaxanthin synthesis in Xanthophyllomyces dendrorhous.
    Breitenbach J, Visser H, Verdoes JC, van Ooyen AJ, Sandmann G.
    Biotechnol Lett; 2011 Apr 20; 33(4):755-61. PubMed ID: 21165672
    [Abstract] [Full Text] [Related]

  • 36. Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous: the role of the transcriptional co-repressor complex Cyc8-Tup1 involved in catabolic repression.
    Córdova P, Alcaíno J, Bravo N, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V.
    Microb Cell Fact; 2016 Nov 14; 15(1):193. PubMed ID: 27842591
    [Abstract] [Full Text] [Related]

  • 37. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid.
    Lu Q, Bu YF, Liu JZ.
    Mar Drugs; 2017 Sep 22; 15(10):. PubMed ID: 28937591
    [Abstract] [Full Text] [Related]

  • 38. Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant.
    Gassel S, Breitenbach J, Sandmann G.
    Appl Microbiol Biotechnol; 2014 Jan 22; 98(1):345-50. PubMed ID: 24241897
    [Abstract] [Full Text] [Related]

  • 39. Directed Coevolution of β-Carotene Ketolase and Hydroxylase and Its Application in Temperature-Regulated Biosynthesis of Astaxanthin.
    Zhou P, Li M, Shen B, Yao Z, Bian Q, Ye L, Yu H.
    J Agric Food Chem; 2019 Jan 30; 67(4):1072-1080. PubMed ID: 30606005
    [Abstract] [Full Text] [Related]

  • 40. Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase.
    Ojima K, Breitenbach J, Visser H, Setoguchi Y, Tabata K, Hoshino T, van den Berg J, Sandmann G.
    Mol Genet Genomics; 2006 Feb 30; 275(2):148-58. PubMed ID: 16416328
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.