These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


308 related items for PubMed ID: 19805272

  • 1. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing.
    Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B, Cherry B, Rey M, Berka R, Kubicek CP, Baker SE, Margeot A.
    Proc Natl Acad Sci U S A; 2009 Sep 22; 106(38):16151-6. PubMed ID: 19805272
    [Abstract] [Full Text] [Related]

  • 2. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype.
    Lichius A, Bidard F, Buchholz F, Le Crom S, Martin J, Schackwitz W, Austerlitz T, Grigoriev IV, Baker SE, Margeot A, Seiboth B, Kubicek CP.
    BMC Genomics; 2015 Apr 20; 16(1):326. PubMed ID: 25909478
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei.
    Zhang J, Chen Y, Wu C, Liu P, Wang W, Wei D.
    J Biol Chem; 2019 Nov 29; 294(48):18435-18450. PubMed ID: 31501242
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review.
    Schmoll M, Kubicek CP.
    Acta Microbiol Immunol Hung; 2003 Nov 29; 50(2-3):125-45. PubMed ID: 12894484
    [Abstract] [Full Text] [Related]

  • 12. Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan.
    Porciuncula Jde O, Furukawa T, Mori K, Shida Y, Hirakawa H, Tashiro K, Kuhara S, Nakagawa S, Morikawa Y, Ogasawara W.
    Biosci Biotechnol Biochem; 2013 Nov 29; 77(3):534-43. PubMed ID: 23470758
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Transgressive phenotypes from outbreeding between the Trichoderma reesei hyper producer RutC30 and a natural isolate.
    Chan Ho Tong L, Jourdier E, Naquin D, Ben Chaabane F, Aouam T, Chartier G, Castro González I, Margeot A, Bidard F.
    Microbiol Spectr; 2024 Oct 03; 12(10):e0044124. PubMed ID: 39162516
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z.
    Microb Cell Fact; 2016 Sep 01; 15(1):151. PubMed ID: 27585813
    [Abstract] [Full Text] [Related]

  • 17. Systems biological approaches towards understanding cellulase production by Trichoderma reesei.
    Kubicek CP.
    J Biotechnol; 2013 Jan 20; 163(2):133-42. PubMed ID: 22750088
    [Abstract] [Full Text] [Related]

  • 18. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators.
    Zhang J, Zhang G, Wang W, Wang W, Wei D.
    Microb Cell Fact; 2018 May 17; 17(1):75. PubMed ID: 29773074
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.