These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 19805566
1. Clindamycin-induced CovS-mediated regulation of the production of virulent exoproteins streptolysin O, NAD glycohydrolase, and streptokinase in Streptococcus pyogenes. Minami M, Kamimura T, Isaka M, Tatsuno I, Ohta M, Hasegawa T. Antimicrob Agents Chemother; 2010 Jan; 54(1):98-102. PubMed ID: 19805566 [Abstract] [Full Text] [Related]
2. Association of CovRS Two-Component Regulatory System with NADase Induction by Clindamycin Treatment in Streptococcus pyogenes. Tatsuno I, Isaka M, Hasegawa T. Jpn J Infect Dis; 2024 Sep 19; 77(5):247-252. PubMed ID: 38556301 [Abstract] [Full Text] [Related]
3. Effect of Phosphatase Activity of the Control of Virulence Sensor (CovS) on Clindamycin-Mediated Streptolysin O Production in Group A Streptococcus. Chiang-Ni C, Tseng HC, Shi YA, Chiu CH. Infect Immun; 2019 Dec 19; 87(12):. PubMed ID: 31527126 [Abstract] [Full Text] [Related]
4. Growth phase-dependent effect of clindamycin on production of exoproteins by Streptococcus pyogenes. Sawai J, Hasegawa T, Kamimura T, Okamoto A, Ohmori D, Nosaka N, Yamada K, Torii K, Ohta M. Antimicrob Agents Chemother; 2007 Feb 19; 51(2):461-7. PubMed ID: 17101685 [Abstract] [Full Text] [Related]
5. Intracellular Group A Streptococcus Induces Golgi Fragmentation To Impair Host Defenses through Streptolysin O and NAD-Glycohydrolase. Nozawa T, Iibushi J, Toh H, Minowa-Nozawa A, Murase K, Aikawa C, Nakagawa I. mBio; 2021 Feb 09; 12(1):. PubMed ID: 33563838 [Abstract] [Full Text] [Related]
6. Autonomous expression of the slo gene of the bicistronic nga-slo operon of Streptococcus pyogenes. Savic DJ, McShan WM, Ferretti JJ. Infect Immun; 2002 May 09; 70(5):2730-3. PubMed ID: 11953421 [Abstract] [Full Text] [Related]
7. Binding of NAD+-Glycohydrolase to Streptolysin O Stabilizes Both Toxins and Promotes Virulence of Group A Streptococcus. Velarde JJ, O'Seaghdha M, Baddal B, Bastiat-Sempe B, Wessels MR. mBio; 2017 Sep 12; 8(5):. PubMed ID: 28900022 [Abstract] [Full Text] [Related]
8. Homologous role of CovRS two-component regulatory system in NAD+ -glycohydrolase activity in Streptococcus dysgalactiae subsp. equisimilis as in Streptococcus pyogenes. Hasegawa T, Matsumoto M, Hata N, Yano H, Isaka M, Tatsuno I. APMIS; 2019 Feb 12; 127(2):87-92. PubMed ID: 30698306 [Abstract] [Full Text] [Related]
9. Effect of antibiotics on group A Streptococcus exoprotein production analyzed by two-dimensional gel electrophoresis. Tanaka M, Hasegawa T, Okamoto A, Torii K, Ohta M. Antimicrob Agents Chemother; 2005 Jan 12; 49(1):88-96. PubMed ID: 15616280 [Abstract] [Full Text] [Related]
10. Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. O'Seaghdha M, Wessels MR. PLoS Pathog; 2013 Jan 12; 9(6):e1003394. PubMed ID: 23762025 [Abstract] [Full Text] [Related]
12. NAD+-glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A streptococci. Bricker AL, Cywes C, Ashbaugh CD, Wessels MR. Mol Microbiol; 2002 Apr 15; 44(1):257-69. PubMed ID: 11967084 [Abstract] [Full Text] [Related]
13. Molecular characterization of NADase-streptolysin O operon of hemolytic streptococci. Kimoto H, Fujii Y, Yokota Y, Taketo A. Biochim Biophys Acta; 2005 Jan 11; 1681(2-3):134-49. PubMed ID: 15627505 [Abstract] [Full Text] [Related]
14. Enhancement of streptolysin O activity and intrinsic cytotoxic effects of the group A streptococcal toxin, NAD-glycohydrolase. Michos A, Gryllos I, Håkansson A, Srivastava A, Kokkotou E, Wessels MR. J Biol Chem; 2006 Mar 24; 281(12):8216-23. PubMed ID: 16431917 [Abstract] [Full Text] [Related]
15. Trading Capsule for Increased Cytotoxin Production: Contribution to Virulence of a Newly Emerged Clade of emm89 Streptococcus pyogenes. Zhu L, Olsen RJ, Nasser W, de la Riva Morales I, Musser JM. mBio; 2015 Oct 06; 6(5):e01378-15. PubMed ID: 26443457 [Abstract] [Full Text] [Related]
16. The Emergence of Successful Streptococcus pyogenes Lineages through Convergent Pathways of Capsule Loss and Recombination Directing High Toxin Expression. Turner CE, Holden MTG, Blane B, Horner C, Peacock SJ, Sriskandan S. mBio; 2019 Dec 10; 10(6):. PubMed ID: 31822586 [Abstract] [Full Text] [Related]
17. A natural inactivating mutation in the CovS component of the CovRS regulatory operon in a pattern D Streptococcal pyogenes strain influences virulence-associated genes. Liang Z, Zhang Y, Agrahari G, Chandrahas V, Glinton K, Donahue DL, Balsara RD, Ploplis VA, Castellino FJ. J Biol Chem; 2013 Mar 01; 288(9):6561-73. PubMed ID: 23316057 [Abstract] [Full Text] [Related]
18. Detection of multiple macrolide- and lincosamide-resistant strains of Streptococcus pyogenes from patients in the Boston area. Hasenbein ME, Warner JE, Lambert KG, Cole SE, Onderdonk AB, McAdam AJ. J Clin Microbiol; 2004 Apr 01; 42(4):1559-63. PubMed ID: 15071004 [Abstract] [Full Text] [Related]
19. Structure of the Streptococcus pyogenes NAD+ Glycohydrolase Translocation Domain and Its Essential Role in Toxin Binding to Oropharyngeal Keratinocytes. Velarde JJ, Piai A, Lichtenstein IJ, Lynskey NN, Chou JJ, Wessels MR. J Bacteriol; 2022 Jan 18; 204(1):e0036621. PubMed ID: 34694903 [Abstract] [Full Text] [Related]