These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 19806751

  • 21. Fluidized bed combustion systems integrating CO2 capture with CaO.
    Abanades JC, Anthony EJ, Wang J, Oakey JE.
    Environ Sci Technol; 2005 Apr 15; 39(8):2861-6. PubMed ID: 15884387
    [Abstract] [Full Text] [Related]

  • 22. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture.
    Liu W, Low NW, Feng B, Wang G, Diniz da Costa JC.
    Environ Sci Technol; 2010 Jan 15; 44(2):841-7. PubMed ID: 20030311
    [Abstract] [Full Text] [Related]

  • 23. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.
    Kierzkowska AM, Pacciani R, Müller CR.
    ChemSusChem; 2013 Jul 15; 6(7):1130-48. PubMed ID: 23821467
    [Abstract] [Full Text] [Related]

  • 24. Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions.
    Valverde JM, Perejon A, Perez-Maqueda LA.
    Environ Sci Technol; 2012 Jun 05; 46(11):6401-8. PubMed ID: 22551622
    [Abstract] [Full Text] [Related]

  • 25. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials.
    Manovic V, Anthony EJ.
    Environ Sci Technol; 2011 Dec 15; 45(24):10750-6. PubMed ID: 22022778
    [Abstract] [Full Text] [Related]

  • 26. Lime-based sorbents for high-temperature CO2 capture--a review of sorbent modification methods.
    Manovic V, Anthony EJ.
    Int J Environ Res Public Health; 2010 Aug 15; 7(8):3129-40. PubMed ID: 20948952
    [Abstract] [Full Text] [Related]

  • 27. Relevant influence of limestone crystallinity on CO₂ capture in the Ca-looping technology at realistic calcination conditions.
    Valverde JM, Sanchez-Jimenez PE, Perez-Maqueda LA.
    Environ Sci Technol; 2014 Aug 19; 48(16):9882-9. PubMed ID: 25029532
    [Abstract] [Full Text] [Related]

  • 28. Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption.
    Zamboni I, Debal M, Matt M, Girods P, Kiennemann A, Rogaume Y, Courson C.
    Environ Sci Pollut Res Int; 2016 Nov 19; 23(22):22253-22266. PubMed ID: 26996917
    [Abstract] [Full Text] [Related]

  • 29. Synthesis of spherical CaO pellets incorporated with Mg, Y, and Ce inert carriers for CO2 capture.
    Liu D, Hu Y, Feng Q, Fu R.
    Environ Sci Pollut Res Int; 2024 Mar 19; 31(14):21224-21234. PubMed ID: 38388973
    [Abstract] [Full Text] [Related]

  • 30. Influence of the calcination and carbonation conditions on the CO₂ uptake of synthetic Ca-based CO₂ sorbents.
    Broda M, Kierzkowska AM, Müller CR.
    Environ Sci Technol; 2012 Oct 02; 46(19):10849-56. PubMed ID: 22950477
    [Abstract] [Full Text] [Related]

  • 31. One-step fabricated Zr-supported, CaO-based pellets via graphite-moulding method for regenerable CO2 capture.
    Long Y, Sun J, Mo C, She X, Zeng P, Xia H, Zhang J, Zhou Z, Nie X, Zhao C.
    Sci Total Environ; 2022 Dec 10; 851(Pt 1):158357. PubMed ID: 36041598
    [Abstract] [Full Text] [Related]

  • 32. Effect of SO2 and steam on CO2 capture performance of biomass-templated calcium aluminate pellets.
    Erans M, Beisheim T, Manovic V, Jeremias M, Patchigolla K, Dieter H, Duan L, Anthony EJ.
    Faraday Discuss; 2016 Oct 20; 192():97-111. PubMed ID: 27485382
    [Abstract] [Full Text] [Related]

  • 33. CO₂ sorbents with scaffold-like Ca-Al layered double hydroxides as precursors for CO₂ capture at high temperatures.
    Chang PH, Lee TJ, Chang YP, Chen SY.
    ChemSusChem; 2013 Jun 20; 6(6):1076-83. PubMed ID: 23650194
    [Abstract] [Full Text] [Related]

  • 34. Crystallographic transformation of limestone during calcination under CO2.
    Valverde JM, Medina S.
    Phys Chem Chem Phys; 2015 Sep 14; 17(34):21912-26. PubMed ID: 26235797
    [Abstract] [Full Text] [Related]

  • 35. Novel CaO-SiO2 sorbent and bifunctional Ni/Co-CaO/SiO2 complex for selective H2 synthesis from cellulose.
    Zhao M, Yang X, Church TL, Harris AT.
    Environ Sci Technol; 2012 Mar 06; 46(5):2976-83. PubMed ID: 22250813
    [Abstract] [Full Text] [Related]

  • 36. Self-reactivated mesostructured Ca-Al-O composite for enhanced high-temperature CO2 capture and carbonation/calcination cycles performance.
    Chang PH, Huang WC, Lee TJ, Chang YP, Chen SY.
    ACS Appl Mater Interfaces; 2015 Mar 25; 7(11):6172-9. PubMed ID: 25730384
    [Abstract] [Full Text] [Related]

  • 37. CO₂ uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds.
    Wang T, Xiao DC, Huang CH, Hsieh YK, Tan CS, Wang CF.
    J Hazard Mater; 2014 Apr 15; 270():92-101. PubMed ID: 24553353
    [Abstract] [Full Text] [Related]

  • 38. Synthesis of CaO-based sorbents for CO(2) capture by a spray-drying technique.
    Liu W, Yin J, Qin C, Feng B, Xu M.
    Environ Sci Technol; 2012 Oct 16; 46(20):11267-72. PubMed ID: 22938656
    [Abstract] [Full Text] [Related]

  • 39. Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions.
    Sun P, Grace JR, Lim CJ, Anthony EJ.
    Environ Sci Technol; 2007 Apr 15; 41(8):2943-9. PubMed ID: 17533862
    [Abstract] [Full Text] [Related]

  • 40. Magnesian calcite sorbent for carbon dioxide capture.
    Mabry JC, Mondal K.
    Environ Technol; 2011 Jan 15; 32(1-2):55-67. PubMed ID: 21473269
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.