These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


197 related items for PubMed ID: 19808067

  • 1. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics.
    Ding MZ, Tian HC, Cheng JS, Yuan YJ.
    J Biotechnol; 2009 Dec; 144(4):279-86. PubMed ID: 19808067
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS, Zhou X, Ding MZ, Yuan YJ.
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [Abstract] [Full Text] [Related]

  • 4. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
    Hou L.
    Appl Biochem Biotechnol; 2010 Feb; 160(4):1084-93. PubMed ID: 19214789
    [Abstract] [Full Text] [Related]

  • 9. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.
    Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO.
    Enzyme Microb Technol; 2012 Sep 10; 51(4):237-43. PubMed ID: 22883559
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae.
    Kong QX, Gu JG, Cao LM, Zhang AL, Chen X, Zhao XM.
    Biotechnol Lett; 2006 Dec 10; 28(24):2033-8. PubMed ID: 17043906
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae.
    Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink GJ, Boonstra J, Dijkhuizen L.
    Appl Microbiol Biotechnol; 2006 Mar 10; 70(2):237-46. PubMed ID: 16041576
    [Abstract] [Full Text] [Related]

  • 17. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM, Tan Y, Yuan YJ.
    Proteomics; 2009 Dec 10; 9(24):5471-83. PubMed ID: 19834894
    [Abstract] [Full Text] [Related]

  • 18. Yeast responses to stresses associated with industrial brewery handling.
    Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA.
    FEMS Microbiol Rev; 2007 Sep 10; 31(5):535-69. PubMed ID: 17645521
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.