These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Senescent erythrocytes: factors affecting the aging of red blood cells. Biondi C, Cotorruelo C, Ensinck A, García Borrás S, Racca L, Racca A. Immunol Invest; 2002 Feb; 31(1):41-50. PubMed ID: 11990462 [Abstract] [Full Text] [Related]
3. Effect of membrane-bound IgG and desialysation in the interaction of monocytes with senescent erythrocytes. Ensinck A, Biondi CS, Marini A, García Borrás S, Racca LL, Cotorruelo CM, Racca AL. Clin Exp Med; 2006 Oct; 6(3):138-42. PubMed ID: 17061064 [Abstract] [Full Text] [Related]
4. Neutrophils and monocytes from subjects with the Mediterranean G6PD variant: effect of Plasmodium falciparum hemozoin on G6PD activity, oxidative burst and cytokine production. Mordmüller B, Turrini F, Long H, Kremsner PG, Arese P. Eur Cytokine Netw; 1998 Sep; 9(3):239-45. PubMed ID: 9831172 [Abstract] [Full Text] [Related]
5. In vitro sequestration of erythrocytes from hosts of various ages. Gershon H, Sheiban E. Adv Exp Med Biol; 1991 Sep; 307():339-50. PubMed ID: 1805597 [Abstract] [Full Text] [Related]
6. Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Arese P, Turrini F, Schwarzer E. Cell Physiol Biochem; 2005 Sep; 16(4-6):133-46. PubMed ID: 16301814 [Abstract] [Full Text] [Related]
7. Senescent erythrocytes: modification of rheologic properties, antigenic expression and interaction with monocytes. Racca A, Biondi C, Cotorruelo C, Galizzi S, Rasia RJ, Stoltz JF, Valverde J. Medicina (B Aires); 1999 Sep; 59(1):33-7. PubMed ID: 10349116 [Abstract] [Full Text] [Related]
8. Synchrony of G6PD activity and RBC fragility under oxidative stress exerted at normal and G6PD deficiency. Abboud MM, Al-Awaida W. Clin Biochem; 2010 Mar; 43(4-5):455-60. PubMed ID: 19941843 [Abstract] [Full Text] [Related]
9. Antibody dependent cell mediated cytotoxicity and phagocytosis of senescent erythrocytes by autologous peripheral blood mononuclear cells. Berkman P, Vardinon N, Yust I. Autoimmunity; 2002 Sep; 35(6):415-9. PubMed ID: 12568122 [Abstract] [Full Text] [Related]
10. Adhesion and erythrophagocytosis of human senescent erythrocytes by autologous monocytes and their inhibition by beta-galactosyl derivatives. Vaysse J, Gattegno L, Bladier D, Aminoff D. Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1339-43. PubMed ID: 3456592 [Abstract] [Full Text] [Related]
11. Longer storage of red blood cells is associated with increased in vitro erythrophagocytosis. Veale MF, Healey G, Sparrow RL. Vox Sang; 2014 Apr; 106(3):219-26. PubMed ID: 24117950 [Abstract] [Full Text] [Related]
12. Glucose-6-phosphate dehydrogenase activity decreases during storage of leukoreduced red blood cells. Peters AL, van Bruggen R, de Korte D, Van Noorden CJ, Vlaar AP. Transfusion; 2016 Feb; 56(2):427-32. PubMed ID: 26456480 [Abstract] [Full Text] [Related]
13. Effects of melatonin on enzyme activities of glucose-6-phosphate dehydrogenase from human erythrocytes in vitro and from rat erythrocytes in vivo. Ciftçi M, Bilici D, Küfrevioğlu OI. Pharmacol Res; 2001 Jul; 44(1):7-11. PubMed ID: 11428904 [Abstract] [Full Text] [Related]
14. Exponential decay of cytochrome b5 and cytochrome b5 reductase during senescence of erythrocytes: relation to the increased methemoglobin content. Takeshita M, Tamura M, Yubisui T, Yoneyama Y. J Biochem; 1983 Mar; 93(3):931-4. PubMed ID: 6874674 [Abstract] [Full Text] [Related]
15. A pair of naturally occurring antibodies may dampen complement-dependent phagocytosis of red cells with a positive antiglobulin test in healthy blood donors. Alaia V, Frey BM, Siderow A, Stammler P, Kradolfer M, Lutz HU. Vox Sang; 2009 Nov; 97(4):338-47. PubMed ID: 19570063 [Abstract] [Full Text] [Related]
16. Changes in rodent-erythrocyte methemoglobin reductase system produced by two malaria parasites, viz. Plasmodium yoelii nigeriensis and Plasmodium berghei. Srivastava S, Alhomida AS, Siddiqi NJ, Pandey VC. Comp Biochem Physiol B Biochem Mol Biol; 2001 Jul; 129(4):725-31. PubMed ID: 11435127 [Abstract] [Full Text] [Related]
17. Content of reduced glutathione and consequences in recipients of glucose-6-phosphate dehydrogenase deficient red blood cells. Huang CS, Sung YC, Huang MJ, Yang CS, Shei WS, Tang TK. Am J Hematol; 1998 Mar; 57(3):187-92. PubMed ID: 9495367 [Abstract] [Full Text] [Related]
18. Study of phagocytosis of senescent erythrocytes in young and elderly individuals. Biondi C, Cotorruelo C, Garcia Borrás S, Rocca L, Ensinck A, Marini A, Racca A. Clin Exp Med; 2003 Feb; 2(4):197-8. PubMed ID: 12624712 [Abstract] [Full Text] [Related]
19. Changes in glucose 6-phosphate dehydrogenase and phosphofructokinase activity during maturation and ageing of red blood cells in children with chronic renal insufficiency. Eggert W, Scigalla P, Gross J. Acta Haematol; 1981 Feb; 65(3):164-9. PubMed ID: 6453496 [Abstract] [Full Text] [Related]
20. The natural anti-alpha-galactosyl IgG on human normal senescent red blood cells. Galili U, Flechner I, Knyszynski A, Danon D, Rachmilewitz EA. Br J Haematol; 1986 Feb; 62(2):317-24. PubMed ID: 3947551 [Abstract] [Full Text] [Related] Page: [Next] [New Search]