These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


336 related items for PubMed ID: 19811533

  • 1. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro.
    Mou X, Peterson CB, Prosser RA.
    Eur J Neurosci; 2009 Oct; 30(8):1451-60. PubMed ID: 19811533
    [Abstract] [Full Text] [Related]

  • 2. Urokinase-type plasminogen activator modulates mammalian circadian clock phase regulation in tissue-type plasminogen activator knockout mice.
    Cooper JM, Rastogi A, Krizo JA, Mintz EM, Prosser RA.
    Eur J Neurosci; 2017 Mar; 45(6):805-815. PubMed ID: 27992087
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Voltage-gated calcium channels play crucial roles in the glutamate-induced phase shifts of the rat suprachiasmatic circadian clock.
    Kim DY, Choi HJ, Kim JS, Kim YS, Jeong DU, Shin HC, Kim MJ, Han HC, Hong SK, Kim YI.
    Eur J Neurosci; 2005 Mar; 21(5):1215-22. PubMed ID: 15813931
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Copper chelation and exogenous copper affect circadian clock phase resetting in the suprachiasmatic nucleus in vitro.
    Yamada Y, Prosser RA.
    Neuroscience; 2014 Jan 03; 256():252-61. PubMed ID: 24161278
    [Abstract] [Full Text] [Related]

  • 8. TrkB-deficient mice show diminished phase shifts of the circadian activity rhythm in response to light.
    Allen GC, Qu X, Earnest DJ.
    Neurosci Lett; 2005 Apr 22; 378(3):150-5. PubMed ID: 15781149
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The mammalian circadian clock in the suprachiasmatic nucleus exhibits rapid tolerance to ethanol in vivo and in vitro.
    Lindsay JH, Glass JD, Amicarelli M, Prosser RA.
    Alcohol Clin Exp Res; 2014 Mar 22; 38(3):760-9. PubMed ID: 24512529
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ, Mistlberger RE.
    Brain Res; 2005 Oct 12; 1059(1):52-8. PubMed ID: 16169532
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock.
    Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE, Alster JM, McPherson PS, Campbell KP, Gillette MU.
    Nature; 1998 Jul 23; 394(6691):381-4. PubMed ID: 9690474
    [Abstract] [Full Text] [Related]

  • 19. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ, Franklin KM, Davis VA, Grossman GH, Knoch ME, Glass JD.
    Eur J Neurosci; 2005 Nov 23; 22(9):2306-14. PubMed ID: 16262668
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.