These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 19813607
21. [The action of loads on bone tissue]. Lorini G, Specchia N, Mannarini M, Rizzi L, Lisai P. Arch Putti Chir Organi Mov; 1991; 39(2):249-72. PubMed ID: 1843073 [Abstract] [Full Text] [Related]
22. A generic 3-dimensional system to mimic trabecular bone surface adaptation. Nowak M. Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):313-7. PubMed ID: 17132617 [Abstract] [Full Text] [Related]
23. The behaviour of microcracks in compact bone. O'brien FJ, Hardiman DA, Hazenberg JG, Mercy MV, Mohsin S, Taylor D, Lee TC. Eur J Morphol; 2005 Oct; 42(1-2):71-9. PubMed ID: 16123026 [Abstract] [Full Text] [Related]
24. Targeted bone remodeling involves BMU steering as well as activation. Martin RB. Bone; 2007 Jun; 40(6):1574-80. PubMed ID: 17398173 [Abstract] [Full Text] [Related]
25. Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone. Pérez MA, Fornells P, Doblaré M, García-Aznar JM. Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):71-80. PubMed ID: 19697182 [Abstract] [Full Text] [Related]
26. Simulation of orthotropic microstructure remodelling of cancellous bone. Kowalczyk P. J Biomech; 2010 Feb 10; 43(3):563-9. PubMed ID: 19879580 [Abstract] [Full Text] [Related]
27. Describing force-induced bone growth and adaptation by a mathematical model. Maldonado S, Findeisen R, Allgöwer F. J Musculoskelet Neuronal Interact; 2008 Feb 10; 8(1):15-7. PubMed ID: 18398254 [Abstract] [Full Text] [Related]
28. A 3-dimensional computer model to simulate trabecular bone metabolism. Ruimerman R, Van Rietbergen B, Hilbers P, Huiskes R. Biorheology; 2003 Feb 10; 40(1-3):315-20. PubMed ID: 12454421 [Abstract] [Full Text] [Related]
29. Improving the damage accumulation in a biomechanical bone remodelling model. Restrepo JM, Choksi R, Hyman JM, Jiang Y. Comput Methods Biomech Biomed Engin; 2009 Jun 10; 12(3):341-52. PubMed ID: 19089785 [Abstract] [Full Text] [Related]
32. [Wolff's law-based continuum topology optimization method and its application in biomechanics]. Cai K, Zhang H, Luo Y, Chen B. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr 10; 25(2):331-5. PubMed ID: 18610617 [Abstract] [Full Text] [Related]
35. A unified theory for osteonal and hemi-osteonal remodeling. van Oers RF, Ruimerman R, Tanck E, Hilbers PA, Huiskes R. Bone; 2008 Feb 10; 42(2):250-9. PubMed ID: 18063436 [Abstract] [Full Text] [Related]
36. The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes. Cox LG, van Rietbergen B, van Donkelaar CC, Ito K. J Biomech; 2011 Jun 03; 44(9):1765-70. PubMed ID: 21546025 [Abstract] [Full Text] [Related]
38. A novel mathematical model of bone remodelling cycles for trabecular bone at the cellular level. Ji B, Genever PG, Patton RJ, Putra D, Fagan MJ. Biomech Model Mechanobiol; 2012 Sep 03; 11(7):973-82. PubMed ID: 22218996 [Abstract] [Full Text] [Related]
39. Damage in trabecular bone at small strains. Morgan EF, Yeh OC, Keaveny TM. Eur J Morphol; 2005 Sep 03; 42(1-2):13-21. PubMed ID: 16123020 [Abstract] [Full Text] [Related]
40. A computational model for cortical endosteal surface remodeling induced by mechanical disuse. Gong H, Zhang M. Mol Cell Biomech; 2010 Mar 03; 7(1):1-11. PubMed ID: 20806719 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]