These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 19820947
21. Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection. Jia H, Pang Y, Chen X, Fang R. Transgenic Res; 2006 Jun; 15(3):375-84. PubMed ID: 16779652 [Abstract] [Full Text] [Related]
22. Assessment of simple marker-free genetic transformation techniques in alfalfa. Ferradini N, Nicolia A, Capomaccio S, Veronesi F, Rosellini D. Plant Cell Rep; 2011 Nov; 30(11):1991-2000. PubMed ID: 21691741 [Abstract] [Full Text] [Related]
23. Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Burgos L, Alburquerque N. Plant Cell Rep; 2003 Aug; 21(12):1167-74. PubMed ID: 12789497 [Abstract] [Full Text] [Related]
24. Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Saelim L, Phansiri S, Suksangpanomrung M, Netrphan S, Narangajavana J. Plant Cell Rep; 2009 Mar; 28(3):445-55. PubMed ID: 19093119 [Abstract] [Full Text] [Related]
25. Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Cervera M, Navarro A, Navarro L, Peña L. Tree Physiol; 2008 Jan; 28(1):55-66. PubMed ID: 17938114 [Abstract] [Full Text] [Related]
26. Development of an efficient transformation method by Agrobacterium tumefaciens and high throughput spray assay to identify transgenic plants for woodland strawberry (Fragaria vesca) using NPTII selection. Pantazis CJ, Fisk S, Mills K, Flinn BS, Shulaev V, Veilleux RE, Dan Y. Plant Cell Rep; 2013 Mar; 32(3):329-37. PubMed ID: 23160638 [Abstract] [Full Text] [Related]
27. Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M. Plant Cell Rep; 2011 Apr; 30(4):587-97. PubMed ID: 21184230 [Abstract] [Full Text] [Related]
28. Construction of Marker-Free Genetically Modified Maize Using a Heat-Inducible Auto-Excision Vector. Du D, Jin R, Guo J, Zhang F. Genes (Basel); 2019 May 17; 10(5):. PubMed ID: 31108922 [Abstract] [Full Text] [Related]
29. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Sugita K, Kasahara T, Matsunaga E, Ebinuma H. Plant J; 2000 Jun 17; 22(5):461-9. PubMed ID: 10849362 [Abstract] [Full Text] [Related]
30. Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration. Du N, Pijut PM. Plant Cell Rep; 2009 Jun 17; 28(6):915-23. PubMed ID: 19343350 [Abstract] [Full Text] [Related]
31. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Gleave AP, Mitra DS, Mudge SR, Morris BA. Plant Mol Biol; 1999 May 17; 40(2):223-35. PubMed ID: 10412902 [Abstract] [Full Text] [Related]
32. [Using green fluorescent protein as a reporter to monitor elimination of selectable marker genes from transgenic plants]. Jia HG, Lü LF, Pang YQ, Chen XY, Fang RX. Sheng Wu Gong Cheng Xue Bao; 2004 Jan 17; 20(1):10-5. PubMed ID: 16108481 [Abstract] [Full Text] [Related]
33. Agrobacterium tumefaciens-mediated transformation of embryogenic tissue and transgenic plant regeneration in Chamaecyparis obtusa Sieb. et Zucc. Taniguchi T, Kurita M, Ohmiya Y, Kondo T. Plant Cell Rep; 2005 Mar 17; 23(12):796-802. PubMed ID: 15761663 [Abstract] [Full Text] [Related]
34. Plastid marker gene excision in greenhouse-grown tobacco by agrobacterium-delivered Cre recombinase. Tungsuchat-Huang T, Maliga P. Methods Mol Biol; 2014 Mar 17; 1132():205-20. PubMed ID: 24599855 [Abstract] [Full Text] [Related]
35. Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds. Corredoira E, Valladares S, Allona I, Aragoncillo C, Vieitez AM, Ballester A. Tree Physiol; 2012 Nov 17; 32(11):1389-402. PubMed ID: 23086811 [Abstract] [Full Text] [Related]
36. Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination. Bala A, Roy A, Das A, Chakraborti D, Das S. BMC Biotechnol; 2013 Oct 21; 13():88. PubMed ID: 24144281 [Abstract] [Full Text] [Related]
37. Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance. Meiyalaghan S, Barrell PJ, Jacobs JM, Conner AJ. BMC Biotechnol; 2011 Oct 13; 11():93. PubMed ID: 21995716 [Abstract] [Full Text] [Related]
38. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Proc Natl Acad Sci U S A; 1997 Mar 18; 94(6):2117-21. PubMed ID: 11038607 [Abstract] [Full Text] [Related]
39. Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots. Sriskandarajah S, Frello S, Jørgensen K, Serek M. Plant Cell Rep; 2004 Aug 18; 23(1-2):59-63. PubMed ID: 15114492 [Abstract] [Full Text] [Related]
40. Inducible excision of selectable marker gene from transgenic plants by the cre/lox site-specific recombination system. Wang Y, Chen B, Hu Y, Li J, Lin Z. Transgenic Res; 2005 Oct 18; 14(5):605-14. PubMed ID: 16245151 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]