These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 19822021
1. How to identify essential genes from molecular networks? del Rio G, Koschützki D, Coello G. BMC Syst Biol; 2009 Oct 13; 3():102. PubMed ID: 19822021 [Abstract] [Full Text] [Related]
5. Prediction of Essential Proteins Based on Local Interaction Density. Qi Y, Luo J. IEEE/ACM Trans Comput Biol Bioinform; 2016 Oct 13; 13(6):1170-1182. PubMed ID: 26701891 [Abstract] [Full Text] [Related]
6. A local average connectivity-based method for identifying essential proteins from the network level. Li M, Wang J, Chen X, Wang H, Pan Y. Comput Biol Chem; 2011 Jun 13; 35(3):143-50. PubMed ID: 21704260 [Abstract] [Full Text] [Related]
7. Identification of essential proteins from weighted protein-protein interaction networks. Li M, Wang JX, Wang H, Pan Y. J Bioinform Comput Biol; 2013 Jun 13; 11(3):1341002. PubMed ID: 23796179 [Abstract] [Full Text] [Related]
8. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Li M, Zheng R, Zhang H, Wang J, Pan Y. Methods; 2014 Jun 01; 67(3):325-33. PubMed ID: 24565748 [Abstract] [Full Text] [Related]
9. An ensemble framework for identifying essential proteins. Zhang X, Xiao W, Acencio ML, Lemke N, Wang X. BMC Bioinformatics; 2016 Aug 25; 17(1):322. PubMed ID: 27557880 [Abstract] [Full Text] [Related]
10. Centralities in simplicial complexes. Applications to protein interaction networks. Estrada E, Ross GJ. J Theor Biol; 2018 Feb 07; 438():46-60. PubMed ID: 29128505 [Abstract] [Full Text] [Related]
12. Predicting essential proteins by integrating orthology, gene expressions, and PPI networks. Zhang X, Xiao W, Hu X. PLoS One; 2018 Feb 07; 13(4):e0195410. PubMed ID: 29634727 [Abstract] [Full Text] [Related]
13. An application of node and edge nonlinear hypergraph centrality to a protein complex hypernetwork. Lawson S, Donovan D, Lefevre J. PLoS One; 2024 Feb 07; 19(10):e0311433. PubMed ID: 39361678 [Abstract] [Full Text] [Related]
14. Modeling interactome: scale-free or geometric? Przulj N, Corneil DG, Jurisica I. Bioinformatics; 2004 Dec 12; 20(18):3508-15. PubMed ID: 15284103 [Abstract] [Full Text] [Related]
15. Network rewiring is an important mechanism of gene essentiality change. Kim J, Kim I, Han SK, Bowie JU, Kim S. Sci Rep; 2012 Dec 12; 2():900. PubMed ID: 23198090 [Abstract] [Full Text] [Related]
17. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones DS, Print C, Miyano S. Bioinformatics; 2008 Apr 01; 24(7):932-42. PubMed ID: 18292116 [Abstract] [Full Text] [Related]
18. A Gibbs sampler for the identification of gene expression and network connectivity consistency. Brynildsen MP, Tran LM, Liao JC. Bioinformatics; 2006 Dec 15; 22(24):3040-6. PubMed ID: 17060361 [Abstract] [Full Text] [Related]
19. Functional clustering of yeast proteins from the protein-protein interaction network. Sen TZ, Kloczkowski A, Jernigan RL. BMC Bioinformatics; 2006 Jul 24; 7():355. PubMed ID: 16863590 [Abstract] [Full Text] [Related]
20. Combining flux and energy balance analysis to model large-scale biochemical networks. Heuett WJ, Qian H. J Bioinform Comput Biol; 2006 Dec 24; 4(6):1227-43. PubMed ID: 17245812 [Abstract] [Full Text] [Related] Page: [Next] [New Search]