These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


658 related items for PubMed ID: 19823733

  • 1. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG, Choi S, Park JK.
    Lab Chip; 2009 Nov 07; 9(21):3155-60. PubMed ID: 19823733
    [Abstract] [Full Text] [Related]

  • 2. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X, Lin SC, Dong C, Huang TJ.
    Lab Chip; 2009 Jun 07; 9(11):1583-9. PubMed ID: 19458866
    [Abstract] [Full Text] [Related]

  • 3. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC, Yen PW, Peng CC, Tung YC.
    Lab Chip; 2012 Sep 07; 12(17):3135-41. PubMed ID: 22763751
    [Abstract] [Full Text] [Related]

  • 4. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW, Yoo JY.
    Biosens Bioelectron; 2009 Aug 15; 24(12):3677-82. PubMed ID: 19559591
    [Abstract] [Full Text] [Related]

  • 5. Hydrodynamic focusing investigation in a micro-flow cytometer.
    Yang AS, Hsieh WH.
    Biomed Microdevices; 2007 Apr 15; 9(2):113-22. PubMed ID: 17151936
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS, Seo KW, Lee SJ.
    Lab Chip; 2011 Feb 07; 11(3):460-5. PubMed ID: 21072415
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A microfluidic manipulator for enrichment and alignment of moving cells and particles.
    Chen HH, Sun B, Tran KK, Shen H, Gao D.
    J Biomech Eng; 2009 Jul 07; 131(7):074505. PubMed ID: 19640141
    [Abstract] [Full Text] [Related]

  • 13. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R, Wada S, Tanaka S, Takeda M, Ishikawa T, Tsubota K, Imai Y, Yamaguchi T.
    Biomed Microdevices; 2008 Apr 07; 10(2):153-67. PubMed ID: 17885805
    [Abstract] [Full Text] [Related]

  • 14. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C, Groisman A.
    Anal Chem; 2006 Aug 15; 78(16):5653-63. PubMed ID: 16906708
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Inertial microfluidics for sheath-less high-throughput flow cytometry.
    Bhagat AA, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I.
    Biomed Microdevices; 2010 Apr 15; 12(2):187-95. PubMed ID: 19946752
    [Abstract] [Full Text] [Related]

  • 17. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J, Wu L, Wu J, Zheng Y, Zhao H, Jin Q, Zhao J.
    Lab Chip; 2009 Nov 07; 9(21):3118-25. PubMed ID: 19823728
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS, Song SH, Jung HI.
    Lab Chip; 2009 Apr 07; 9(7):939-48. PubMed ID: 19294305
    [Abstract] [Full Text] [Related]

  • 20. Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays.
    Choi S, Park JK.
    Anal Chem; 2008 Apr 15; 80(8):3035-9. PubMed ID: 18355090
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.