These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


658 related items for PubMed ID: 19823733

  • 21. A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers.
    Thangawng AL, Howell PB, Richards JJ, Erickson JS, Ligler FS.
    Lab Chip; 2009 Nov 07; 9(21):3126-30. PubMed ID: 19823729
    [Abstract] [Full Text] [Related]

  • 22. Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modelling and experiment.
    Nguyen NT, Huang X.
    Lab Chip; 2005 Nov 07; 5(11):1320-6. PubMed ID: 16234959
    [Abstract] [Full Text] [Related]

  • 23. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices.
    Yamada M, Kasim V, Nakashima M, Edahiro J, Seki M.
    Biotechnol Bioeng; 2004 Nov 20; 88(4):489-94. PubMed ID: 15459911
    [Abstract] [Full Text] [Related]

  • 24. Three-dimensional axisymmetric flow-focusing device using stereolithography.
    Morimoto Y, Tan WH, Takeuchi S.
    Biomed Microdevices; 2009 Apr 20; 11(2):369-77. PubMed ID: 19009352
    [Abstract] [Full Text] [Related]

  • 25. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA, Hoffman MD, Jacobson SC.
    Lab Chip; 2008 Feb 20; 8(2):316-22. PubMed ID: 18231672
    [Abstract] [Full Text] [Related]

  • 26. Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining.
    Kummrow A, Theisen J, Frankowski M, Tuchscheerer A, Yildirim H, Brattke K, Schmidt M, Neukammer J.
    Lab Chip; 2009 Apr 07; 9(7):972-81. PubMed ID: 19294310
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device.
    VanDelinder V, Groisman A.
    Anal Chem; 2006 Jun 01; 78(11):3765-71. PubMed ID: 16737235
    [Abstract] [Full Text] [Related]

  • 32. High flow rate microfluidic device for blood plasma separation using a range of temperatures.
    Rodríguez-Villarreal AI, Arundell M, Carmona M, Samitier J.
    Lab Chip; 2010 Jan 21; 10(2):211-9. PubMed ID: 20066249
    [Abstract] [Full Text] [Related]

  • 33. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator.
    Xue X, Patel MK, Kersaudy-Kerhoas M, Bailey C, Desmulliez MP.
    Comput Methods Biomech Biomed Engin; 2011 Jun 21; 14(6):549-60. PubMed ID: 21331958
    [Abstract] [Full Text] [Related]

  • 34. Hydrodynamically tunable optofluidic cylindrical microlens.
    Mao X, Waldeisen JR, Juluri BK, Huang TJ.
    Lab Chip; 2007 Oct 21; 7(10):1303-8. PubMed ID: 17896014
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Diffusion based analysis in a sheath flow microchannel: the sheath flow T-sensor.
    Munson MS, Hawkins KR, Hasenbank MS, Yager P.
    Lab Chip; 2005 Aug 21; 5(8):856-62. PubMed ID: 16027937
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 33.