These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 19830420

  • 41. Chitin-binding domain based immobilization of D-hydantoinase.
    Chern JT, Chao YP.
    J Biotechnol; 2005 May 25; 117(3):267-75. PubMed ID: 15862357
    [Abstract] [Full Text] [Related]

  • 42. Enzymatic detection of D-amino acids.
    Molla G, Piubelli L, Volontè F, Pilone MS.
    Methods Mol Biol; 2012 May 25; 794():273-89. PubMed ID: 21956570
    [Abstract] [Full Text] [Related]

  • 43. Crystal structure of D-hydantoinase from Bacillus stearothermophilus: insight into the stereochemistry of enantioselectivity.
    Cheon YH, Kim HS, Han KH, Abendroth J, Niefind K, Schomburg D, Wang J, Kim Y.
    Biochemistry; 2002 Jul 30; 41(30):9410-7. PubMed ID: 12135362
    [Abstract] [Full Text] [Related]

  • 44. Directed evolution of a novel N-carbamylase/D-hydantoinase fusion enzyme for functional expression with enhanced stability.
    Kim GJ, Cheon YH, Kim HS.
    Biotechnol Bioeng; 2000 Apr 20; 68(2):211-7. PubMed ID: 10712737
    [Abstract] [Full Text] [Related]

  • 45. Thermostable D-carbamoylase from Sinorhizobium morelens S-5: purification, characterization and gene expression in Escherichia coli.
    Wu S, Liu Y, Zhao G, Wang J, Sun W.
    Biochimie; 2006 Apr 20; 88(3-4):237-44. PubMed ID: 16546310
    [Abstract] [Full Text] [Related]

  • 46. Enzymatic resolution for the preparation of enantiomerically enriched D-beta-heterocyclic alanine derivatives using Escherichia coli aromatic L-amino acid transaminase.
    Cho BK, Park HY, Seo JH, Kinnera K, Lee BS, Kim BG.
    Biotechnol Bioeng; 2004 Nov 20; 88(4):512-9. PubMed ID: 15459908
    [Abstract] [Full Text] [Related]

  • 47. The first aminoacylase-catalyzed enantioselective synthesis of aromatic beta-amino acids.
    Groger H, Trauthwein H, Buchholz S, Drauz K, Sacherer C, Godfrin S, Werner H.
    Org Biomol Chem; 2004 Jul 21; 2(14):1977-8. PubMed ID: 15254623
    [Abstract] [Full Text] [Related]

  • 48. New biotech applications from evolved D-amino acid oxidases.
    Pollegioni L, Molla G.
    Trends Biotechnol; 2011 Jun 21; 29(6):276-83. PubMed ID: 21397351
    [Abstract] [Full Text] [Related]

  • 49. Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and alpha-amino-epsilon-caprolactam racemase.
    Asano Y, Yamaguchi S.
    J Am Chem Soc; 2005 Jun 01; 127(21):7696-7. PubMed ID: 15913357
    [Abstract] [Full Text] [Related]

  • 50. Engineered dehydrogenase biocatalysts for non-natural amino acids: efficient isolation of the D-enantiomer from racemic mixtures.
    Paradisi F, Conway PA, Maguire AR, Engel PC.
    Org Biomol Chem; 2008 Oct 07; 6(19):3611-5. PubMed ID: 19082164
    [Abstract] [Full Text] [Related]

  • 51. Distribution, industrial applications, and enzymatic synthesis of D-amino acids.
    Gao X, Ma Q, Zhu H.
    Appl Microbiol Biotechnol; 2015 Apr 07; 99(8):3341-9. PubMed ID: 25758960
    [Abstract] [Full Text] [Related]

  • 52. Bacterial β-aminopeptidases: structural insights and applications for biocatalysis.
    Heck T, Geueke B, Kohler HP.
    Chem Biodivers; 2012 Nov 07; 9(11):2388-409. PubMed ID: 23161625
    [Abstract] [Full Text] [Related]

  • 53. Process parameter optimization for hydantoinase-mediated synthesis of optically pure carbamoyl amino acids of industrial value using Pseudomonas aeruginosa resting cells.
    Engineer AS, Dhakephalkar AP, Gaikaiwari RP, Dhakephalkar PK.
    J Ind Microbiol Biotechnol; 2013 Dec 07; 40(12):1367-72. PubMed ID: 24065358
    [Abstract] [Full Text] [Related]

  • 54. The structure of L-hydantoinase from Arthobacter aurescens leads to an understanding of dihydropyrimidinase substrate and enantio specificity.
    Abendroth J, Niefind K, May O, Siemann M, Syldatk C, Schomburg D.
    Biochemistry; 2002 Jul 09; 41(27):8589-97. PubMed ID: 12093275
    [Abstract] [Full Text] [Related]

  • 55. Multistep enzyme catalyzed reactions for unnatural amino acids.
    D'Arrigo P, Tessaro D.
    Methods Mol Biol; 2012 Jul 09; 794():21-35. PubMed ID: 21956554
    [Abstract] [Full Text] [Related]

  • 56. Engineering cyclic amidases for non-natural amino acid synthesis.
    Heras-Vázquez FJ, Clemente-Jiménez JM, Martínez-Rodríguez S, Rodríguez-Vico F.
    Methods Mol Biol; 2012 Jul 09; 794():87-104. PubMed ID: 21956558
    [Abstract] [Full Text] [Related]

  • 57. Substrate-dependent enantioselectivity of a novel hydantoinase from Arthrobacter aurescens DSM 3745: purification and characterization as new member of cyclic amidases.
    May O, Siemann M, Pietzsch M, Kiess M, Mattes R, Syldatk C.
    J Biotechnol; 1998 Mar 26; 61(1):1-13. PubMed ID: 9650283
    [Abstract] [Full Text] [Related]

  • 58. Enantioselective synthesis of (S)-2-amino-4-phenylbutanoic acid by the hydantoinase method.
    Lo HH, Kao CH, Lee DS, Yang TK, Hsu WH.
    Chirality; 2003 Oct 26; 15(8):699-702. PubMed ID: 12923807
    [Abstract] [Full Text] [Related]

  • 59. Engineering the Enantioselectivity and Thermostability of a (+)-γ-Lactamase from Microbacterium hydrocarbonoxydans for Kinetic Resolution of Vince Lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one).
    Gao S, Zhu S, Huang R, Li H, Wang H, Zheng G.
    Appl Environ Microbiol; 2018 Jan 01; 84(1):. PubMed ID: 29054871
    [Abstract] [Full Text] [Related]

  • 60. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.
    Satomura T, Sakuraba H, Suye S, Ohshima T.
    Appl Microbiol Biotechnol; 2015 Nov 01; 99(22):9337-47. PubMed ID: 26362681
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.