These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
585 related items for PubMed ID: 19831385
1. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals. Li J, Schachermeyer S, Wang Y, Yin Y, Zhong W. Anal Chem; 2009 Dec 01; 81(23):9723-9. PubMed ID: 19831385 [Abstract] [Full Text] [Related]
3. Fluorescence signal amplification by cation exchange in ionic nanocrystals. Li J, Zhang T, Ge J, Yin Y, Zhong W. Angew Chem Int Ed Engl; 2009 Dec 01; 48(9):1588-91. PubMed ID: 19165850 [Abstract] [Full Text] [Related]
4. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU. Nat Protoc; 2008 Dec 01; 3(2):321-9. PubMed ID: 18274534 [Abstract] [Full Text] [Related]
13. An efficient fluorescent method for selective detection of mature miRNA species. Kato Y. Nucleic Acids Symp Ser (Oxf); 2008 Dec 01; (52):71-2. PubMed ID: 18776258 [Abstract] [Full Text] [Related]
14. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid. Huang F, Chen G. Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul 01; 70(2):318-23. PubMed ID: 17954036 [Abstract] [Full Text] [Related]
15. Fluorescence hydrogel array based on interfacial cation exchange amplification for highly sensitive microRNA detection. Wu L, Wang Y, He R, Zhang Y, He Y, Wang C, Lu Z, Liu Y, Ju H. Anal Chim Acta; 2019 Nov 08; 1080():206-214. PubMed ID: 31409471 [Abstract] [Full Text] [Related]
16. Electrochemical based detection of microRNA, mir21 in breast cancer cells. Kilic T, Topkaya SN, Ozkan Ariksoysal D, Ozsoz M, Ballar P, Erac Y, Gozen O. Biosens Bioelectron; 2012 Nov 08; 38(1):195-201. PubMed ID: 22776181 [Abstract] [Full Text] [Related]
17. Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes. Hartig JS, Grüne I, Najafi-Shoushtari SH, Famulok M. J Am Chem Soc; 2004 Jan 28; 126(3):722-3. PubMed ID: 14733539 [Abstract] [Full Text] [Related]
18. Detection of MicroRNAs using target-guided formation of conducting polymer nanowires in nanogaps. Fan Y, Chen X, Trigg AD, Tung CH, Kong J, Gao Z. J Am Chem Soc; 2007 May 02; 129(17):5437-43. PubMed ID: 17411036 [Abstract] [Full Text] [Related]
19. Exponential amplification for chemiluminescence resonance energy transfer detection of microRNA in real samples based on a cross-catalyst strand-displacement network. Bi S, Zhang J, Hao S, Ding C, Zhang S. Anal Chem; 2011 May 15; 83(10):3696-702. PubMed ID: 21446757 [Abstract] [Full Text] [Related]
20. Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level. Zhang Q, Chen F, Xu F, Zhao Y, Fan C. Anal Chem; 2014 Aug 19; 86(16):8098-105. PubMed ID: 25072308 [Abstract] [Full Text] [Related] Page: [Next] [New Search]