These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
404 related items for PubMed ID: 19837041
1. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Vögtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, Kellermann J, Voos W, Sickmann A, Pfanner N, Meisinger C. Cell; 2009 Oct 16; 139(2):428-39. PubMed ID: 19837041 [Abstract] [Full Text] [Related]
2. The N-terminal extension of plant mitochondrial carrier proteins is removed by two-step processing: the first cleavage is by the mitochondrial processing peptidase. Murcha MW, Elhafez D, Millar AH, Whelan J. J Mol Biol; 2004 Nov 19; 344(2):443-54. PubMed ID: 15522297 [Abstract] [Full Text] [Related]
3. Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55. Venne AS, Vögtle FN, Meisinger C, Sickmann A, Zahedi RP. J Proteome Res; 2013 Sep 06; 12(9):3823-30. PubMed ID: 23964590 [Abstract] [Full Text] [Related]
4. INTERMEDIATE CLEAVAGE PEPTIDASE55 Modifies Enzyme Amino Termini and Alters Protein Stability in Arabidopsis Mitochondria. Huang S, Nelson CJ, Li L, Taylor NL, Ströher E, Peteriet J, Millar AH. Plant Physiol; 2015 Jun 06; 168(2):415-27. PubMed ID: 25862457 [Abstract] [Full Text] [Related]
7. A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Brown MT, Goldstone HM, Bastida-Corcuera F, Delgadillo-Correa MG, McArthur AG, Johnson PJ. Mol Microbiol; 2007 Jun 06; 64(5):1154-63. PubMed ID: 17542912 [Abstract] [Full Text] [Related]
8. Comparative Analysis of Mitochondrial N-Termini from Mouse, Human, and Yeast. Calvo SE, Julien O, Clauser KR, Shen H, Kamer KJ, Wells JA, Mootha VK. Mol Cell Proteomics; 2017 Apr 06; 16(4):512-523. PubMed ID: 28122942 [Abstract] [Full Text] [Related]
9. Spatial orientation of mitochondrial processing peptidase and a preprotein revealed by fluorescence resonance energy transfer. Nishino TG, Kitano K, Kojima K, Ogishima T, Ito A, Kitada S. J Biochem; 2007 Jun 06; 141(6):889-95. PubMed ID: 17426154 [Abstract] [Full Text] [Related]
10. The mitochondrial proteome database: MitoP2. Elstner M, Andreoli C, Klopstock T, Meitinger T, Prokisch H. Methods Enzymol; 2009 Jun 06; 457():3-20. PubMed ID: 19426859 [Abstract] [Full Text] [Related]
12. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A. J Proteome Res; 2006 Jul 06; 5(7):1543-54. PubMed ID: 16823961 [Abstract] [Full Text] [Related]
13. Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Vögtle FN, Prinz C, Kellermann J, Lottspeich F, Pfanner N, Meisinger C. Mol Biol Cell; 2011 Jul 01; 22(13):2135-43. PubMed ID: 21525245 [Abstract] [Full Text] [Related]
14. Processing peptidases in mitochondria and chloroplasts. Teixeira PF, Glaser E. Biochim Biophys Acta; 2013 Feb 01; 1833(2):360-70. PubMed ID: 22495024 [Abstract] [Full Text] [Related]
15. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. Smith DG, Gawryluk RM, Spencer DF, Pearlman RE, Siu KW, Gray MW. J Mol Biol; 2007 Nov 30; 374(3):837-63. PubMed ID: 17959197 [Abstract] [Full Text] [Related]