These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


414 related items for PubMed ID: 19840788

  • 41. Experimental models of multiple sclerosis.
    Pachner AR.
    Curr Opin Neurol; 2011 Jun; 24(3):291-9. PubMed ID: 21519255
    [Abstract] [Full Text] [Related]

  • 42. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis.
    Nikić I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Brück W, Bishop D, Misgeld T, Kerschensteiner M.
    Nat Med; 2011 Apr; 17(4):495-9. PubMed ID: 21441916
    [Abstract] [Full Text] [Related]

  • 43. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis.
    Morquette B, Juźwik CA, Drake SS, Charabati M, Zhang Y, Lécuyer MA, Galloway DA, Dumas A, de Faria Junior O, Paradis-Isler N, Bueno M, Rambaldi I, Zandee S, Moore C, Bar-Or A, Vallières L, Prat A, Fournier AE.
    Brain; 2019 Oct 01; 142(10):2979-2995. PubMed ID: 31412103
    [Abstract] [Full Text] [Related]

  • 44. Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis.
    Huizinga R, van der Star BJ, Kipp M, Jong R, Gerritsen W, Clarner T, Puentes F, Dijkstra CD, van der Valk P, Amor S.
    Glia; 2012 Mar 01; 60(3):422-31. PubMed ID: 22161990
    [Abstract] [Full Text] [Related]

  • 45. Demyelination and axonal damage in a non-human primate model of multiple sclerosis.
    Mancardi G, Hart B, Roccatagliata L, Brok H, Giunti D, Bontrop R, Massacesi L, Capello E, Uccelli A.
    J Neurol Sci; 2001 Feb 15; 184(1):41-9. PubMed ID: 11231031
    [Abstract] [Full Text] [Related]

  • 46. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model.
    Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, Esiri M, Fugger L.
    Brain; 2011 Feb 15; 134(Pt 2):571-84. PubMed ID: 21233144
    [Abstract] [Full Text] [Related]

  • 47. The central role of mitochondria in axonal degeneration in multiple sclerosis.
    Campbell GR, Worrall JT, Mahad DJ.
    Mult Scler; 2014 Dec 15; 20(14):1806-13. PubMed ID: 25122475
    [Abstract] [Full Text] [Related]

  • 48. Axonal loss in multiple sclerosis: causes and mechanisms.
    Criste G, Trapp B, Dutta R.
    Handb Clin Neurol; 2014 Dec 15; 122():101-13. PubMed ID: 24507515
    [Abstract] [Full Text] [Related]

  • 49. Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Kornek B, Storch MK, Bauer J, Djamshidian A, Weissert R, Wallstroem E, Stefferl A, Zimprich F, Olsson T, Linington C, Schmidbauer M, Lassmann H.
    Brain; 2001 Jun 15; 124(Pt 6):1114-24. PubMed ID: 11353727
    [Abstract] [Full Text] [Related]

  • 50. New findings and old controversies in the research of multiple sclerosis and its model experimental autoimmune encephalomyelitis.
    Aharoni R.
    Expert Rev Clin Immunol; 2013 May 15; 9(5):423-40. PubMed ID: 23634737
    [Abstract] [Full Text] [Related]

  • 51. Restricted immune responses lead to CNS demyelination and axonal damage.
    Mancardi G, Hart BA, Capello E, Brok HP, Ben-Nun A, Roccatagliata L, Giunti D, Gazzola P, Dono M, Kerlero de Rosbo N, Colombo M, Uccelli A.
    J Neuroimmunol; 2000 Jul 24; 107(2):178-83. PubMed ID: 10854654
    [Abstract] [Full Text] [Related]

  • 52. Immunological aspects of axon injury in multiple sclerosis.
    Howe CL.
    Curr Top Microbiol Immunol; 2008 Jul 24; 318():93-131. PubMed ID: 18219816
    [Abstract] [Full Text] [Related]

  • 53. Models of multiple sclerosis: new insights into pathophysiology and repair.
    Lassmann H.
    Curr Opin Neurol; 2008 Jun 24; 21(3):242-7. PubMed ID: 18451705
    [Abstract] [Full Text] [Related]

  • 54. Ten years of proteomics in multiple sclerosis.
    Farias AS, Pradella F, Schmitt A, Santos LM, Martins-de-Souza D.
    Proteomics; 2014 Mar 24; 14(4-5):467-80. PubMed ID: 24339438
    [Abstract] [Full Text] [Related]

  • 55. Experimental models of relapsing-remitting multiple sclerosis: current concepts and perspective.
    Skundric DS.
    Curr Neurovasc Res; 2005 Oct 24; 2(4):349-62. PubMed ID: 16181126
    [Abstract] [Full Text] [Related]

  • 56. Focal and diffuse cortical degenerative changes in a marmoset model of multiple sclerosis.
    Pomeroy IM, Jordan EK, Frank JA, Matthews PM, Esiri MM.
    Mult Scler; 2010 May 24; 16(5):537-48. PubMed ID: 20194580
    [Abstract] [Full Text] [Related]

  • 57. [Axonal damage in multiple sclerosis].
    Bartosik-Psujek H, Stelmasiak Z.
    Neurol Neurochir Pol; 2002 May 24; 36(3):505-12. PubMed ID: 12185807
    [Abstract] [Full Text] [Related]

  • 58. [Axonal degeneration in the pathogenesis of multiple sclerosis].
    Mirowska D, Członkowska A.
    Neurol Neurochir Pol; 2002 May 24; 36(4):777-89. PubMed ID: 12418141
    [Abstract] [Full Text] [Related]

  • 59. Accumulation of cortical hyperphosphorylated neurofilaments as a marker of neurodegeneration in multiple sclerosis.
    Gray E, Rice C, Nightingale H, Ginty M, Hares K, Kemp K, Cohen N, Love S, Scolding N, Wilkins A.
    Mult Scler; 2013 Feb 24; 19(2):153-61. PubMed ID: 22723571
    [Abstract] [Full Text] [Related]

  • 60. Anti-neuronal and stress-induced-phosphoprotein 1 antibodies in neuro-Behçet's disease.
    Vural B, Uğurel E, Tüzün E, Kürtüncü M, Zuliani L, Cavuş F, Içöz S, Erdağ E, Gül A, Güre AO, Vincent A, Ozbek U, Eraksoy M, Akman-Demir G.
    J Neuroimmunol; 2011 Oct 28; 239(1-2):91-7. PubMed ID: 21875754
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.