These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 19840875

  • 1. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy.
    Meenach SA, Hilt JZ, Anderson KW.
    Acta Biomater; 2010 Mar; 6(3):1039-46. PubMed ID: 19840875
    [Abstract] [Full Text] [Related]

  • 2. Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery.
    Meenach SA, Shapiro JM, Hilt JZ, Anderson KW.
    J Biomater Sci Polym Ed; 2013 Mar; 24(9):1112-26. PubMed ID: 23683041
    [Abstract] [Full Text] [Related]

  • 3. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites.
    Frimpong RA, Fraser S, Hilt JZ.
    J Biomed Mater Res A; 2007 Jan; 80(1):1-6. PubMed ID: 16941587
    [Abstract] [Full Text] [Related]

  • 4. Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide.
    Meenach SA, Anderson AA, Suthar M, Anderson KW, Hilt JZ.
    J Biomed Mater Res A; 2009 Dec; 91(3):903-9. PubMed ID: 19090484
    [Abstract] [Full Text] [Related]

  • 5. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR, Yan WH, Guo YH, Qi H, Zhou HX.
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [Abstract] [Full Text] [Related]

  • 6. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression.
    Tang QS, Zhang DS, Cong XM, Wan ML, Jin LQ.
    Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332
    [Abstract] [Full Text] [Related]

  • 7. Controlled synergistic delivery of paclitaxel and heat from poly(β-amino ester)/iron oxide-based hydrogel nanocomposites.
    Meenach SA, Otu CG, Anderson KW, Hilt JZ.
    Int J Pharm; 2012 May 10; 427(2):177-84. PubMed ID: 22326297
    [Abstract] [Full Text] [Related]

  • 8. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z, Zhang Y, Markland P, Yang VC.
    J Biomed Mater Res; 2002 Oct 10; 62(1):14-21. PubMed ID: 12124782
    [Abstract] [Full Text] [Related]

  • 9. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].
    Kettering M, Winter J, Zeisberger M, Alexiou C, Bremer-Streck S, Bergemann C, Kaiser WA, Hilger I.
    Rofo; 2006 Dec 10; 178(12):1255-60. PubMed ID: 17136650
    [Abstract] [Full Text] [Related]

  • 10. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS, Longmire EK, Bischof JC.
    Langmuir; 2007 Nov 20; 23(24):12329-36. PubMed ID: 17960940
    [Abstract] [Full Text] [Related]

  • 11. Magnetic mesoporous silica spheres for hyperthermia therapy.
    Martín-Saavedra FM, Ruíz-Hernández E, Boré A, Arcos D, Vallet-Regí M, Vilaboa N.
    Acta Biomater; 2010 Dec 20; 6(12):4522-31. PubMed ID: 20601238
    [Abstract] [Full Text] [Related]

  • 12. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel.
    Gong C, Shi S, Wang X, Wang Y, Fu S, Dong P, Chen L, Zhao X, Wei Y, Qian Z.
    J Phys Chem B; 2009 Jul 30; 113(30):10183-8. PubMed ID: 19572675
    [Abstract] [Full Text] [Related]

  • 13. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia.
    Babincov M, Altanerov V, Altaner C, Bergemann C, Babinec P.
    IEEE Trans Nanobioscience; 2008 Mar 30; 7(1):15-9. PubMed ID: 18334449
    [Abstract] [Full Text] [Related]

  • 14. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I, Kim GW, Choi YJ, Kim MS, Park Y, Lee KB, Kim IS, Hwang SJ, Tae G.
    Biomed Mater; 2006 Sep 30; 1(3):116-23. PubMed ID: 18458391
    [Abstract] [Full Text] [Related]

  • 15. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA, Kisaalita WS, Majetich GF, Shimkus JM.
    Biotechnol Prog; 2005 Sep 30; 21(4):1281-8. PubMed ID: 16080712
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS, Yang PJ, Temenoff JS.
    Acta Biomater; 2009 Feb 30; 5(2):570-9. PubMed ID: 18948068
    [Abstract] [Full Text] [Related]

  • 18. Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia.
    Cazares-Cortes E, Espinosa A, Guigner JM, Michel A, Griffete N, Wilhelm C, Ménager C.
    ACS Appl Mater Interfaces; 2017 Aug 09; 9(31):25775-25788. PubMed ID: 28723064
    [Abstract] [Full Text] [Related]

  • 19. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.
    Rego GNA, Mamani JB, Souza TKF, Nucci MP, Silva HRD, Gamarra LF.
    Einstein (Sao Paulo); 2019 Aug 01; 17(4):eAO4786. PubMed ID: 31390427
    [Abstract] [Full Text] [Related]

  • 20. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.
    Purushotham S, Chang PE, Rumpel H, Kee IH, Ng RT, Chow PK, Tan CK, Ramanujan RV.
    Nanotechnology; 2009 Jul 29; 20(30):305101. PubMed ID: 19581698
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.