These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 19841935
1. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Villa-Bellosta R, Sorribas V. Pflugers Arch; 2010 Feb; 459(3):499-508. PubMed ID: 19841935 [Abstract] [Full Text] [Related]
2. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H, Wagner CA. Pflugers Arch; 2008 Nov; 457(2):539-49. PubMed ID: 18535837 [Abstract] [Full Text] [Related]
9. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Wagner CA, Rubio-Aliaga I, Hernando N. Pediatr Nephrol; 2019 Apr; 34(4):549-559. PubMed ID: 29275531 [Abstract] [Full Text] [Related]
10. The calcium-sensing receptor has only a parathyroid hormone-dependent role in the acute response of renal phosphate transporters to phosphate intake. Daryadel A, Küng CJ, Haykir B, Sabrautzki S, de Angelis MH, Hernando N, Rubio-Aliaga I, Wagner CA. Am J Physiol Renal Physiol; 2024 May 01; 326(5):F792-F801. PubMed ID: 38545651 [Abstract] [Full Text] [Related]
11. Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Fujii T, Segawa H, Hanazaki A, Nishiguchi S, Minoshima S, Ohi A, Tominaga R, Sasaki S, Tanifuji K, Koike M, Arima Y, Shiozaki Y, Kaneko I, Ito M, Tatsumi S, Miyamoto KI. Clin Exp Nephrol; 2019 Jul 01; 23(7):898-907. PubMed ID: 30895530 [Abstract] [Full Text] [Related]
12. Evidence of an intestinal phosphate transporter alternative to type IIb sodium-dependent phosphate transporter in rats with chronic kidney disease. Ichida Y, Ohtomo S, Yamamoto T, Murao N, Tsuboi Y, Kawabe Y, Segawa H, Horiba N, Miyamoto KI, Floege J. Nephrol Dial Transplant; 2021 Jan 01; 36(1):68-75. PubMed ID: 32879980 [Abstract] [Full Text] [Related]
13. Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Ambühl PM, Zajicek HK, Wang H, Puttaparthi K, Levi M. Kidney Int; 1998 May 01; 53(5):1288-98. PubMed ID: 9573544 [Abstract] [Full Text] [Related]
14. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney. Fujii T, Shiozaki Y, Segawa H, Nishiguchi S, Hanazaki A, Noguchi M, Kirino R, Sasaki S, Tanifuji K, Koike M, Yokoyama M, Arima Y, Kaneko I, Tatsumi S, Ito M, Miyamoto KI. Clin Exp Nephrol; 2019 Mar 01; 23(3):313-324. PubMed ID: 30317447 [Abstract] [Full Text] [Related]
15. Dexamethasone and cyclic AMP regulate sodium phosphate cotransporter (NaPi-IIb and Pit-1) mRNA and phosphate uptake in rat alveolar type II epithelial cells. Jin C, Zoidis E, Ghirlanda C, Schmid C. Lung; 2010 Mar 01; 188(1):51-61. PubMed ID: 19806400 [Abstract] [Full Text] [Related]
17. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters. Kaneko I, Segawa H, Furutani J, Kuwahara S, Aranami F, Hanabusa E, Tominaga R, Giral H, Caldas Y, Levi M, Kato S, Miyamoto K. Pflugers Arch; 2011 Jan 01; 461(1):77-90. PubMed ID: 21057807 [Abstract] [Full Text] [Related]