These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 19842120
1. Modeling the effects of different mobile phase compositions and temperatures on the retention of various analytes in HPLC. Jouyban A, Soltanpour S, Acree WE, Thomas D, Agrafiotou P, Pappa-Louisi A. J Sep Sci; 2009 Nov; 32(22):3898-905. PubMed ID: 19842120 [Abstract] [Full Text] [Related]
2. Modeling the effects of type and concentration of organic modifiers, column type and chemical structure of analytes on the retention in reversed phase liquid chromatography using a single model. Jouyban A, Soltani S, Shayanfar A, Pappa-Louisi A. J Chromatogr A; 2011 Sep 16; 1218(37):6454-63. PubMed ID: 21820120 [Abstract] [Full Text] [Related]
3. Modeling the combined effect of temperature and organic modifier content on reversed-phase chromatographic retention. Effectiveness of derived models in isocratic and isothermal mode retention prediction. Pappa-Louisi A, Nikitas P, Papachristos K, Zisi C. J Chromatogr A; 2008 Aug 01; 1201(1):27-34. PubMed ID: 18554606 [Abstract] [Full Text] [Related]
4. Retention time and peak width in the combined pH/organic modifier gradient high performance liquid chromatography. Wiczling P, Kaliszan R. J Chromatogr A; 2010 May 14; 1217(20):3375-81. PubMed ID: 20347447 [Abstract] [Full Text] [Related]
5. pH/organic solvent double-gradient reversed-phase HPLC. Wiczling P, Markuszewski MJ, Kaliszan M, Kaliszan R. Anal Chem; 2005 Jan 15; 77(2):449-58. PubMed ID: 15649040 [Abstract] [Full Text] [Related]
6. Combined effects of mobile phase composition and temperature on the retention of homologous and polar test compounds on polydentate C8 column. Jandera P, Krupczyńska K, Vynuchalová K, Buszewski B. J Chromatogr A; 2010 Sep 24; 1217(39):6052-60. PubMed ID: 20728897 [Abstract] [Full Text] [Related]
7. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model. Lázaro E, Izquierdo P, Ràfols C, Rosés M, Bosch E. J Chromatogr A; 2009 Jul 03; 1216(27):5214-27. PubMed ID: 19493533 [Abstract] [Full Text] [Related]
8. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase. Subirats X, Bosch E, Rosés M. J Chromatogr A; 2007 Jan 05; 1138(1-2):203-15. PubMed ID: 17118378 [Abstract] [Full Text] [Related]
9. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography. Poole CF, Kiridena W, DeKay C, Koziol WW, Rosencrans RD. J Chromatogr A; 2006 May 19; 1115(1-2):133-41. PubMed ID: 16564531 [Abstract] [Full Text] [Related]
10. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. Bicker W, Wu J, Lämmerhofer M, Lindner W. J Sep Sci; 2008 Sep 19; 31(16-17):2971-87. PubMed ID: 18785146 [Abstract] [Full Text] [Related]
11. Interconversion of gradient and isocratic retention data in reversed-phase liquid chromatography: effect of the uptake of eluent modifier on the retention of analytes. Wang M, Mallette J, Parcher JF. J Chromatogr A; 2009 Dec 04; 1216(49):8630-5. PubMed ID: 19879590 [Abstract] [Full Text] [Related]
12. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors. D'Archivio AA, Ruggieri F, Mazzeo P, Tettamanti E. Anal Chim Acta; 2007 Jun 19; 593(2):140-51. PubMed ID: 17543600 [Abstract] [Full Text] [Related]
13. Multicomponent (n >or= 3) sorption isotherms in reversed-phase liquid chromatography: the effect of immobilized eluent on the retention of analytes. Mallette J, Wang M, Parcher JF. Anal Chem; 2010 Apr 15; 82(8):3329-36. PubMed ID: 20307055 [Abstract] [Full Text] [Related]
15. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography. Torres-Lapasió JR, Ruiz-Angel MJ, García-Alvarez-Coque MC. J Chromatogr A; 2007 Sep 28; 1166(1-2):85-96. PubMed ID: 17720177 [Abstract] [Full Text] [Related]
16. Retention of ionisable compounds on high-performance liquid chromatography XVI. Estimation of retention with acetonitrile/water mobile phases from aqueous buffer pH and analyte pKa. Subirats X, Bosch E, Rosés M. J Chromatogr A; 2006 Jul 21; 1121(2):170-7. PubMed ID: 16753172 [Abstract] [Full Text] [Related]
17. Reversed-phase high performance liquid chromatography (RP-HPLC) characteristics of some 9,10-anthraquinone derivatives using binary acetonitrile-water mixtures as mobile phase. Hemmateenejad B, Shamsipur M, Safavi A, Sharghi H, Amiri AA. Talanta; 2008 Oct 19; 77(1):351-9. PubMed ID: 18804645 [Abstract] [Full Text] [Related]
18. Prediction of peak shape in hydro-organic and micellar-organic liquid chromatography as a function of mobile phase composition. Baeza-Baeza JJ, Ruiz-Angel MJ, García-Alvarez-Coque MC. J Chromatogr A; 2007 Sep 07; 1163(1-2):119-27. PubMed ID: 17612547 [Abstract] [Full Text] [Related]
19. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution. Jin CH, Lee JW, Row KH. J Sep Sci; 2008 Jan 07; 31(1):23-9. PubMed ID: 18064619 [Abstract] [Full Text] [Related]
20. Simultaneous effect of pH, temperature and mobile phase composition in the chromatographic retention of ionizable compounds. Agrafiotou P, Ràfols C, Castells C, Bosch E, Rosés M. J Chromatogr A; 2011 Jul 29; 1218(30):4995-5009. PubMed ID: 21255784 [Abstract] [Full Text] [Related] Page: [Next] [New Search]