These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


278 related items for PubMed ID: 1984854

  • 1. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.
    Cokelet GR, Goldsmith HL.
    Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W, Johnson PC, Gaehtgens P.
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [Abstract] [Full Text] [Related]

  • 4. A model for motion and sedimentation of cylindrical red-cell aggregates during slow blood flow in narrow horizontal tubes.
    Secomb TW, el-Kareh AW.
    J Biomech Eng; 1994 Aug; 116(3):243-9. PubMed ID: 7799623
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Time-dependent rheological behaviour of blood flow at low shear in narrow horizontal tubes.
    Alonso C, Pries AR, Gaehtgens P.
    Biorheology; 1989 Aug; 26(2):229-46. PubMed ID: 2605330
    [Abstract] [Full Text] [Related]

  • 8. Tube flow of human blood at near zero shear.
    Gaehtgens P.
    Biorheology; 1987 Aug; 24(4):367-76. PubMed ID: 3663895
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Flow-dependent rheological properties of blood in capillaries.
    Secomb TW.
    Microvasc Res; 1987 Jul; 34(1):46-58. PubMed ID: 3657604
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Flows of red blood cell suspensions through narrow two-dimensional channels.
    Chan T, Jaffrin MY, Seshadri V, Mc Kay C.
    Biorheology; 1982 Jul; 19(1/2):253-67. PubMed ID: 6807368
    [Abstract] [Full Text] [Related]

  • 14. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D, Gompper G, Fedosov DA.
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [Abstract] [Full Text] [Related]

  • 15. Theoretical model of blood flow through hollow fibres considering hematocrit-dependent, non-Newtonian blood properties.
    Lerche D, Oelke R.
    Int J Artif Organs; 1990 Nov; 13(11):742-6. PubMed ID: 2089012
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Nonuniform red cell distribution in 20 to 100 micrometers bifurcations.
    Fenton BM, Carr RT, Cokelet GR.
    Microvasc Res; 1985 Jan; 29(1):103-26. PubMed ID: 2580216
    [Abstract] [Full Text] [Related]

  • 19. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate.
    Tilles AW, Eckstein EC.
    Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.