These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 19852016

  • 1. Fast prediction of cytochrome P450 mediated drug metabolism.
    Rydberg P, Vasanthanathan P, Oostenbrink C, Olsen L.
    ChemMedChem; 2009 Dec; 4(12):2070-9. PubMed ID: 19852016
    [Abstract] [Full Text] [Related]

  • 2. Prediction of activation energies for aromatic oxidation by cytochrome P450.
    Rydberg P, Ryde U, Olsen L.
    J Phys Chem A; 2008 Dec 18; 112(50):13058-65. PubMed ID: 18986131
    [Abstract] [Full Text] [Related]

  • 3. Regioselectivity prediction of CYP1A2-mediated phase I metabolism.
    Jung J, Kim ND, Kim SY, Choi I, Cho KH, Oh WS, Kim DN, No KT.
    J Chem Inf Model; 2008 May 18; 48(5):1074-80. PubMed ID: 18412330
    [Abstract] [Full Text] [Related]

  • 4. CypScore: Quantitative prediction of reactivity toward cytochromes P450 based on semiempirical molecular orbital theory.
    Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, Göller AH.
    ChemMedChem; 2009 Apr 18; 4(4):657-69. PubMed ID: 19243088
    [Abstract] [Full Text] [Related]

  • 5. Site of metabolism prediction for six biotransformations mediated by cytochromes P450.
    Zheng M, Luo X, Shen Q, Wang Y, Du Y, Zhu W, Jiang H.
    Bioinformatics; 2009 May 15; 25(10):1251-8. PubMed ID: 19286831
    [Abstract] [Full Text] [Related]

  • 6. A pragmatic approach using first-principle methods to address site of metabolism with implications for reactive metabolite formation.
    Hsiao YW, Petersson C, Svensson MA, Norinder U.
    J Chem Inf Model; 2012 Mar 26; 52(3):686-95. PubMed ID: 22299574
    [Abstract] [Full Text] [Related]

  • 7. 2D SMARTCyp reactivity-based site of metabolism prediction for major drug-metabolizing cytochrome P450 enzymes.
    Liu R, Liu J, Tawa G, Wallqvist A.
    J Chem Inf Model; 2012 Jun 25; 52(6):1698-712. PubMed ID: 22631565
    [Abstract] [Full Text] [Related]

  • 8. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques.
    Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NP, Olsen L, Jørgensen FS.
    Drug Metab Dispos; 2009 Mar 25; 37(3):658-64. PubMed ID: 19056915
    [Abstract] [Full Text] [Related]

  • 9. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations.
    Vasanthanathan P, Olsen L, Jørgensen FS, Vermeulen NP, Oostenbrink C.
    Drug Metab Dispos; 2010 Aug 25; 38(8):1347-54. PubMed ID: 20413725
    [Abstract] [Full Text] [Related]

  • 10. Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2.
    Guengerich FP, Krauser JA, Johnson WW.
    Biochemistry; 2004 Aug 24; 43(33):10775-88. PubMed ID: 15311939
    [Abstract] [Full Text] [Related]

  • 11. Kinetic deuterium isotope effects for 7-alkoxycoumarin O-dealkylation reactions catalyzed by human cytochromes P450 and in liver microsomes. Rate-limiting C-H bond breaking in cytochrome P450 1A2 substrate oxidation.
    Kim KH, Isin EM, Yun CH, Kim DH, Guengerich FP.
    FEBS J; 2006 May 24; 273(10):2223-31. PubMed ID: 16649998
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites.
    Ridder L, Wagener M.
    ChemMedChem; 2008 May 24; 3(5):821-32. PubMed ID: 18311745
    [Abstract] [Full Text] [Related]

  • 14. Kinetic isotope effects implicate a single oxidant for cytochrome P450-mediated O-dealkylation, N-oxygenation, and aromatic hydroxylation of 6-methoxyquinoline.
    Dowers TS, Jones JP.
    Drug Metab Dispos; 2006 Aug 24; 34(8):1288-90. PubMed ID: 16714370
    [Abstract] [Full Text] [Related]

  • 15. Predicting activation enthalpies of cytochrome-P450-mediated hydrogen abstractions. 2. Comparison of semiempirical PM3, SAM1, and AM1 with a density functional theory method.
    Mayeno AN, Robinson JL, Yang RS, Reisfeld B.
    J Chem Inf Model; 2009 Jul 24; 49(7):1692-703. PubMed ID: 19522482
    [Abstract] [Full Text] [Related]

  • 16. Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s.
    McGinnity DF, Parker AJ, Soars M, Riley RJ.
    Drug Metab Dispos; 2000 Nov 24; 28(11):1327-34. PubMed ID: 11038161
    [Abstract] [Full Text] [Related]

  • 17. Oxidative metabolism of the alkaloid rutaecarpine by human cytochrome P450.
    Ueng YF, Don MJ, Jan WC, Wang SY, Ho LK, Chen CF.
    Drug Metab Dispos; 2006 May 24; 34(5):821-7. PubMed ID: 16501007
    [Abstract] [Full Text] [Related]

  • 18. Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites.
    Avent KM, DeVoss JJ, Gillam EM.
    Chem Res Toxicol; 2006 Jul 24; 19(7):914-20. PubMed ID: 16841959
    [Abstract] [Full Text] [Related]

  • 19. A novel model for the prediction of drug-drug interactions in humans based on in vitro cytochrome p450 phenotypic data.
    Lu C, Miwa GT, Prakash SR, Gan LS, Balani SK.
    Drug Metab Dispos; 2007 Jan 24; 35(1):79-85. PubMed ID: 17020957
    [Abstract] [Full Text] [Related]

  • 20. Autoactivation and activation of the cytochrome P450s.
    Ekins S, Ring BJ, Binkley SN, Hall SD, Wrighton SA.
    Int J Clin Pharmacol Ther; 1998 Dec 24; 36(12):642-51. PubMed ID: 9877001
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.