These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 19853577

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Studies of the structure and organization of cationic lipid bilayer membranes: calorimetric, spectroscopic, and x-ray diffraction studies of linear saturated P-O-ethyl phosphatidylcholines.
    Lewis RN, Winter I, Kriechbaum M, Lohner K, McElhaney RN.
    Biophys J; 2001 Mar; 80(3):1329-42. PubMed ID: 11222294
    [Abstract] [Full Text] [Related]

  • 24. Lateral order in gel, subgel and crystalline phases of lipid membranes: wide-angle X-ray scattering.
    Marsh D.
    Chem Phys Lipids; 2012 Jan; 165(1):59-76. PubMed ID: 22101108
    [Abstract] [Full Text] [Related]

  • 25. Combination of MD Simulations with Two-State Kinetic Rate Modeling Elucidates the Chain Melting Transition of Phospholipid Bilayers for Different Hydration Levels.
    Kowalik B, Schubert T, Wada H, Tanaka M, Netz RR, Schneck E.
    J Phys Chem B; 2015 Nov 05; 119(44):14157-67. PubMed ID: 26439409
    [Abstract] [Full Text] [Related]

  • 26. Transbilayer movement of phospholipids at the main phase transition of lipid membranes: implications for rapid flip-flop in biological membranes.
    John K, Schreiber S, Kubelt J, Herrmann A, Müller P.
    Biophys J; 2002 Dec 05; 83(6):3315-23. PubMed ID: 12496099
    [Abstract] [Full Text] [Related]

  • 27. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.
    Huster D, Arnold K, Gawrisch K.
    Biophys J; 2000 Jun 05; 78(6):3011-8. PubMed ID: 10827979
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. [Effect of changes in the lipid composition on the plasma membrane of Saccharomyces cerevisiae through mutation of the phase transition and mixing behavior of the lipid fraction].
    Dörfler HD, Fabian B.
    J Basic Microbiol; 1995 Jun 05; 35(4):207-15. PubMed ID: 7473062
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Lyotropic phase transitions in phospholipids as evidenced by small-angle synchrotron X-ray scattering.
    Pohle W, Selle C, Gauger DR, Brandenburg K.
    J Biomol Struct Dyn; 2001 Oct 05; 19(2):351-64. PubMed ID: 11697739
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Role of phospholipid molecular species in maintaining lipid membrane structure in response to temperature.
    Farkas T, Dey I, Buda C, Halver JE.
    Biophys Chem; 1994 May 05; 50(1-2):147-55. PubMed ID: 8011929
    [Abstract] [Full Text] [Related]

  • 39. Partitioning of pyrene-labeled phospho- and sphingolipids between ordered and disordered bilayer domains.
    Koivusalo M, Alvesalo J, Virtanen JA, Somerharju P.
    Biophys J; 2004 Feb 05; 86(2):923-35. PubMed ID: 14747328
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.